1 Introduction to Statistical Methods for Geography

1.1 Introduction

The study of geographic phenomena often requires the application of statistical methods to produce new insight. The following questions serve to illustrate the broad variety of areas in which statistical analysis has recently been applied to geographic problems:

1. How do blood lead levels in children vary over space? Are the levels randomly scattered throughout the city, or are there discernible geographic patterns? How are any patterns related to the characteristics of both housing and occupants? (Griffith et al. 1998).

2. Can the geographic diffusion of democracy that has occurred during the post-World War II era be described as a steady process over time, or has it occurred in waves, or have there been “bursts” of diffusion that have taken place during short time periods? (O’Loughlin et al. 1998).

3. What are the effects of global warming on the geographic distribution of species? For example, how will the type and spatial distribution of tree species change in particular areas? (MacDonald et al. 1998).

4. What are the effects of different marketing strategies on product performance? For example, are mass-marketing strategies effective, despite the more distant location of their markets? (Cornish 1997).

These studies all make use of statistical analysis to arrive at their conclusions. Methods of statistical analysis play a central role in the study of geographic problems – in a survey of articles that had a geographic focus, Slocum (1990) found that 53% made use of at least one mainstream quantitative method. The role of statistical analysis in geography may be placed within a broader context through its connection to the “scientific method”, which provides a more general framework for the study of geographic problems.

1.2 The Scientific Method

Social scientists as well as physical scientists often make use of the scientific method in their attempts to learn about the world. Figure 1.1 illustrates this method, from the initial attempts to organize ideas about a subject, to the building of a theory.
Suppose that we are interested in describing and explaining the spatial pattern of cancer cases in a metropolitan area. We might begin by plotting recent incidences on a map. Such descriptive exercises often lead to an unexpected result – in Figure 1.2, we perceive two fairly distinct clusters of cases. The surprising results generated through the process of description naturally lead us to the next step on the route to explanation by forcing us to generate hypotheses about the underlying process. A “rigorous” definition of the term hypothesis is a proposition whose truth or falsity is capable of being tested. Though in the social sciences we do not always expect to come to firm conclusions in the form of “laws”, we can also think of hypotheses as potential answers to our initial surprise. For example, one hypothesis in the present example is that the pattern of cancer cases is related to the distance from local power plants.

To test the hypothesis, we need a model, which is a device for simplifying reality so that the relationship between variables may be more clearly studied. Whereas a hypothesis might suggest a relationship between two variables, a model is more detailed, in the sense that it suggests the nature of the relationship between the variables. In our example, we might speculate that the likelihood of cancer declines as the distance from a power plant increases. To test this model, we could plot cancer rates for a subarea versus the distance the subarea centroid was from a power plant. If we observe a downward sloping curve, we have gathered some support for our hypothesis (see Figure 1.3).
Models are validated by comparing observed data with what is expected. If the model is a good representation of reality, there will be a close match between the two. If observations and expectations are far apart, we need to “go back to the drawing board”, and come up with a new hypothesis. It might be the case, for example, that the pattern in Figure 1.2 is due simply to the fact that the population itself is clustered. If this new hypothesis is true, or if there is evidence in favor of it, the spatial pattern of cancer then becomes understandable; a similar rate throughout the population generates apparent cancer clusters because of the spatial distribution of the population.

Though models are often used to learn about particular situations, more often one also wishes to learn about the underlying process that led to it. We would like to be able to generalize from one study to statements about other situations. One reason for studying the spatial pattern of cancer cases is to determine whether there is a relationship between cancer rates and the distance to specific power plants; a more general objective is to learn about the relationship between cancer rates and the distance to any power plant. One way of making such generalizations is to accumulate a lot of evidence. If we were to repeat our analysis in many locations throughout a country, and if our findings were similar in all cases, we would have uncovered an empirical generalization. In a strict sense, laws are sometimes defined as universal statements of unrestricted range. In our example, our generalization would not have unrestricted range, and we might want, for example, to confine our generalization or empirical law to power plants and cancer cases in the country of interest.

Einstein called theories “free creations of the human mind”. In the context of our diagram, we may think of theories as collections of generalizations or laws. The whole collection is greater than the sum of its parts in the sense that it gives greater insight than that produced by the generalizations or laws alone. If, for example, we generate other empirical laws that relate cancer rates to other factors, such as diet, we begin to build a theory of the spatial variation in cancer rates.

Statistical methods occupy a central role in the scientific method as portrayed in Figure 1.1, because they allow us to suggest and test hypotheses using models.
In the following section, we will review some of the important types of statistical approaches in geography.

1.3 Exploratory and Confirmatory Approaches in Geography

The scientific method provides us with a structured approach to answering questions of interest. At the core of the method is the desire to form and test hypotheses. As we have seen, hypotheses may be thought of loosely as potential answers to questions. For instance, a map of snowfall may suggest the hypothesis that the distance away from a nearby lake may play an important role in the distribution of snowfall amounts.

Geographers use spatial analysis within the context of the scientific method in at least two distinct ways. Exploratory methods of analysis are used to suggest hypotheses; confirmatory methods are, as the name suggests, used to help confirm hypotheses. A method of visualization or description that led to the discovery of clusters in Figure 1.2 would be an exploratory method, while a statistical method that confirmed that such an arrangement of points would have been unlikely to occur by chance would be a confirmatory method. In this book we will focus primarily upon confirmatory methods.

We should note here two important points. First, confirmatory methods do not always confirm or refute hypotheses – the world is too complicated a place, and the methods often have important limitations that prevent such confirmation and refutation. Nevertheless, they are important in structuring our thinking and in taking a rigorous and scientific approach to answering questions. Second, the use of exploratory methods over the past few years has been increasing rapidly. This has come about as a combination of the availability of large databases and sophisticated software (including GIS), and a recognition that confirmatory statistical methods are appropriate in some situations and not others. Throughout the book we will keep the reader aware of these points by pointing out some of the limitations of confirmatory analysis.

1.4 Probability and Statistics

1.4.1 Probability

Probability may be thought of as a measure of uncertainty, with the measure taking on a value ranging from zero to one. Experiments and processes often have many possible outcomes, and the specific outcome is uncertain until it is observed. If we happen to know that a particular outcome will definitely not occur, that outcome has a probability of zero. At the other extreme, if we know that an outcome will occur, it is said to have a probability of one. A major focus of the study of
probability is the study of the likelihood of various outcomes. How likely or probable is it that a town will be struck with two hurricanes in one season? What is the probability that a resident in a community who is 4 km from a new grocery store will become a new customer?

Probabilities may be derived in a variety of ways, ranging from subjective beliefs, to the use of relative frequencies of past events. When deciding whether a coin will come up heads when tossed, you may choose to believe that the probability is 0.5, or you could actually toss the coin many times to determine the proportion of times that it is heads. If you tossed it 1000 times, and it came up heads 623 times, an estimate of the probability of heads that relied on relative frequency would be $\frac{623}{1000} = 0.623$.

The study of probability has its origins, at least to some degree, in questions of gambling that arose in the 17th century. In particular, correspondence between Pascal and deMere in 1651 concerned how to properly resolve a game of chance that had to be terminated before its conclusion. Suppose that the first player with three wins is declared the winner, and can lay claim to the prize of 64 euros. deMere and Pascal debated how to divide up the euros, given that the game had to be terminated, and given that deMere had two wins, and Pascal had one win. Pascal argued that deMere should receive $\frac{2}{3}$ of the euros ($\frac{2}{3}$ of 64 is 42.67); Pascal would receive the remaining 21.33 euros.

demere argued that they should consider what could happen if they continued. With probability equal to $\frac{1}{2}$, Pascal would win, and they could then split the pot of money (each receiving 32 euros), since they would each have two wins. With probability also equal to $\frac{1}{2}$, deMere would win the next round, and consequently the entire prize of 64. deMere thus argued that his fair share was an average of these two, equally likely outcomes; his rightful share was therefore ($\frac{32}{2} + \frac{64}{2}$) = 48 (and not 42.67, as Pascal had suggested). deMere’s reasoning, which is based upon probabilities and possible outcomes forms the basis of modern probability.

What is the difference between probability and statistics? The field of probability provides the mathematical foundation for statistical applications. Year-long courses in probability and statistics are often subdivided into a first-semester course on probability, and then a second-semester course in statistics. Probability is discussed in more detail in Chapters 3 and 4; in the next section we describe in more detail the field of statistics.

1.4.2 Statistics

Historically, a “statist” was a word for a politician, and statistics was “that branch of political science dealing with the collection, classification, and discussion of facts bearing on the condition of a state or community” (Hammond and McCullagh 19xx). A good example of this usage that survives to the present is the term “vital statistics” used to describe the collection and tabulation of information on a region’s rates and numbers of births and deaths.
McGrew and Monroe (20xx) define statistics as “the collection, classification, presentation, and analysis of numerical data”. Note that this definition contains both the historical function of collection, classification, and presentation, but also the analysis of data. Modern definitions have in common the objective of inferring from a sample of data the nature of a larger population from which the sample was drawn. Statistics is often subdivided into two general areas – descriptive statistics are used to summarize and present information and this is in keeping with the more historical definition of the field; inferential statistics, as the name implies, allow inference about a larger population from a sample.

1.4.3 Probability Paradoxes

1.4.3.1 A spatial paradox: random movement in several dimensions This paradox is taken from Karlin and Taylor (19xx). Consider a number line as in Figure 1.4, and suppose that our initial position is at the origin. We flip a single coin to govern our movement; if it is heads, we move to the right, and if it is tails we move to the left. If we flip the coin many times, it is certain that we will, at some point, return to the origin (implying that, at that point in time, the total number of heads is equal to the total number of tails). This should not be surprising – it accords with our intuition that the number of heads and tails exhibited by a fair coin should be roughly equal.

Now consider generalizing the experiment to two dimensions (Figure 1.5), where the outcome of two coin flips governs the movement on the two-dimensional grid. One coin governs movement in the vertical direction and the other in the horizontal direction (for example, go up and to the right if both coins are heads, and down and to the left if both are tails). Again it is possible to show that, although the path will certainly wander in the two-dimensional space, it is certain that there will be a return to the origin.

Finally, extend the procedure to three dimensions; each of three coins governs movement in one of the three dimensions. Movement starts at the origin and proceeds to lattice points within a cube. It now turns out that a return to the origin is no longer guaranteed! That is, there is a probability greater than zero that the random path will wander away from the origin and never return! This conclusion is also true for random walks in all dimensions greater than three. This is an example where the process of induction fails – what is true in one and two dimensions cannot be generalized to higher dimensions. Furthermore, it highlights the fact that while our intuition is often good, it is not perfect. We need to rely not only...
on our intuition about probability, but on a firmer foundation of the theory of probability theory.

1.4.3.2 A non-spatial paradox: quality pie This probability paradox is taken from the Mathematical Games section of *Scientific American*.

Consider an individual who goes into a diner each day to have a piece of pie. The diner always has apple and cherry pie, and sometimes has blueberry pie. The quality of the pies is rated on a scale of one (lousy) to six (excellent), and the daily variability in the quality of each is summarized in Figure 1.6. For example, the cherry pie is either very good (it has rating of five 49% of the time) or barely palatable (it has a rating of one 51% of the time). The diner wishes to make a choice so as to maximize the proportion of time he or she ends up with the best pie. (Of course the person does not know the quality of the pie until after they have ordered!).
Consider first the decision faced by the diner on days where there is no blueberry pie. The possibilities are given in Table 1.1 (the best choice for the delay is underlined and in bold).

The probabilities represent the proportion of times that particular combination of pie qualities will occur. If the diner chooses apple pie, they will be getting the best piece of pie the diner has to offer about 62% of the time (.1078 + .1122 + .1122 + .2856 = .6178). If they choose cherry, they will get the best piece of the pie only 38% of the time (.1078 + .2744 = .3822). The choice is clear – go with the apple pie.

Now let’s examine what happens when the restaurant also happens to have blueberry pie. The possibilities are now given in Table 1.2. Here apple is best about 33% of the time (.1078 + .1122 + .1122 + .3322), cherry is best about 38% of the time (.1078 + .2744 = .3822), and blueberry is best almost 29% of the time (it is only best on days when apple has a rating of two and cherry a rating of one – which occurs 28.56% of the time).

The best choice is now to go with the cherry pie. Thus we have a rather bizarre scenario. The optimal strategy should be for the individual to ask the waiter or waitress if they happen to have blueberry pie; if they don’t the person should choose apple, and if they do, the person should choose cherry!

1.4.4 Geographical Applications of Probability and Statistics

1.4.4.1 Buffon’s needle and migration distances

There are very little data collected in the United States on the distances people move when they change their residential address. Yet this is a very basic measurement pertaining to a very important
geographic process. Information is collected on the proportion of people changing their county of residence, and this may be used, together with concepts of probability, to estimate migration distances.

We begin with the work of Buffon, a 17th century naturalist. Buffon was interested in many topics, ranging from subjects in botany to the strength of ships at sea. He was also interested in probability, and embedded in a supplement to the 4th volume of his 24-volume treatise on natural history is the following question.

Suppose we have a set of many parallel lines, separated by a constant distance, s. Now toss a needle of length L on to the set of parallel lines (see Figure 1.7). What is the probability that the needle will cross a line? Clearly this probability will be higher as the length of the needle increases, and as the distance between the parallel lines decreases. Buffon found that the probability (p) of a randomly tossed needle crossing the lines was $p = \frac{2L}{\pi s}$. Buffon’s needle was actually used at the time to estimate π; if a needle of known length is tossed many times onto a set of parallel lines separated by a known distance, one can calculate p as the ratio of the number of crossings to the number of tosses. The only remaining unknown in the equation is π. Unfortunately, the needle must be tossed a very large number of times to estimate π with any reasonable level of accuracy, and so such needle-tossing never developed into a popular pastime.

Laplace generalized this to the case of a square grid (see Figure 1.8). When the side of a square is equal to s, the probability of crossing a line is now equal to $p = \ldots$.

Let us now turn to the connection to migration distance estimation. Define the ends of the needle as the origin and destination of a migrant; we wish to estimate this unknown needle length (L), which corresponds to migration distance. We will make the assumption that counties are approximately square, and that they are all the same size (i.e., a county map will look roughly like a square grid). We can estimate the side of a square, s, as the square root of the average area of a county. We may also estimate p using data that are collected on the proportion of all migrants who change their county of residence when they relocate. Finally, we of course...
now know the value of \(\pi \). We can solve Laplace’s equation for the unknown migration distance:

\[
[\text{EQ}]
\]

Using data from the United States, \(p = s = \), and therefore we estimate \(L \) as approximately 8 miles. Despite the perception that long-distance moving is perhaps the norm, the majority of individuals move a short distance when they relocate.

Although the assumption of square counties of equal size is of course unreasonable, a primary objective of a model is to simplify reality. We do not expect or contend that counties are equal-sized squares. We could be more exact by performing an experiment where we toss needles of a given size down onto a map of US counties; by trying different needle sizes, we will eventually find one that gives us county-crossing probabilities equal to about \(p \). We do not evaluate this assumption in greater detail here, but it turns out that the assumption is relatively robust – the conclusion doesn’t change much when the assumption does not quite hold. Instead, such an assumption allows us to get a reasonable estimate of migration distance.

1.4.4.2 Do two places differ in terms of air quality? Suppose we are interested in comparing the particulate matter in two cities. We collect daily data on PM10 (particles of 10 micrometers or less in size). Suppose we collect five daily samples in city A and five in city B. Table 1.3 presents the results.

The sample mean in city B is clearly higher than the mean in city A. But keep in mind that we have only taken a sample; there is certainly fluctuation from day to day, and so the “true” means could possibly be the same (that is, if we took a very large sample over a very large number of days, the means could be equal).

We should not necessarily immediately conclude that city B has a higher mean particulate count; our results could be due to sampling fluctuations. Instead we
need to weigh the observed difference in the sample means against the difference in sample means that we might expect from sampling variation alone (when the true means are equal). If the observed difference in sample means is small relative to the difference that might be expected even when the true means are equal, we will accept the possibility that the true means are equal. On the other hand, if the observed difference in sample means is larger than the differences we would expect from such sampling fluctuations, we will conclude that the two cities have different levels of particulate matter. Details of problems like this (including the thresholds that must be set to distinguish between accepting and rejecting the idea that the means are equal) are covered in Chapters x–x, which deal with questions of statistical inference.

1.4.4.3 Are housing prices lower near airports?

An important objective in urban geography is to understand the spatial variation in housing prices. Housing characteristics such as lot size, the number of bedrooms, and the age of the house have a clear influence on selling prices. Characteristics of the neighborhood can also influence prices; whether a house is situated next to an industrial park or a recreational park is likely to have a clear effect on the price!

A nearby airport could potentially have a positive impact on prices, since accessibility is generally desirable. However, owning a home in the flight path of an airport may not necessarily be positive when the noise level is taken into consideration. We could take a sample of homes near the airport in question; we could also find a sample of homes with similar characteristics (e.g., similar number of bedrooms, floor space, lot size, etc.). Suppose we find that the homes near the airport had a mean selling price that was lower than the homes not located near the airport. We need to decide whether (a) the sample reflects a “true” difference in housing prices, based upon location with respect to the airport, or (b) the difference between the two locations is not significant, and the observed sample difference in prices is the result of sampling fluctuations (keep in mind that our samples represent a small fraction of the homes that could potentially be sold; if we went out and collected more data, the mean difference in selling price would likely be different). This is
again a problem in inferential statistics, based upon a desire to make an inference from a sample. We will return to this problem later in the book, and we will discuss how a critical threshold may be set; if the observed difference is below this threshold, we settle on conclusion (b); if the difference is above the threshold, we decide on option (a) above.

1.4.4.4 Why is the traffic moving faster in the other lane? Almost all would agree that traffic seems to move faster in the other lane. Recently, there have been several statistical explanations for this. These explanations include:

(a) Redelmeier and Tibshirani (1999) created a simulation where two lanes had identical characteristics, in terms of the number of vehicles and their average speed. The only difference in the two lanes was the initial spacing between vehicles. In the simulation, the hypothetical vehicles would accelerate when traveling slowly, and would decelerate when approaching too closely to the vehicle in front of them. Not surprisingly, while moving quickly vehicles were relatively far from one another; while moving slowly, they were closer together. Since the average speed in each lane was similar, and the number of cars in each lane was identical, each vehicle was passed by the same number of vehicles it had passed. However, the number of one-second time intervals during which a vehicle was passed was greater than the number of one-second intervals during which the vehicle was passing another vehicle. Thus more time is spent being passed by other vehicles than is spent in passing vehicles (fast cars are spread out, and they are the ones overtaking you ... you are passing the slow cars, which are bunched up, so that it doesn’t take long to pass them).

(b) Bostrom (2001) has, on the surface, a simpler answer to the question – cars in the other lane are moving faster! If cars in the fast lane are more spread out, the density of cars will be greatest in the slow lane. Now if you take a random observation from any driver at any time, there is a relatively high probability it will be from the slow lane, since that is where the density of cars is highest. So at any given time, to most drivers, cars in the other lane are in fact moving faster.

(c) Dawson and Riggs (2004) note that if you are traveling at just under or just over the speed limit, and if you accurately observe the speeds of the vehicles passing you as well as the speed of the vehicles you are passing, there will be a misperception of the true average speed. In particular, drivers traveling at just under the average speed will perceive traffic to be going faster than it really is, while drivers traveling at just over the average speed will perceive traffic to be slower than it really is. The reason has to do with the selection of vehicles whose speeds are being observed – this sample will be biased in the sense that it will include many of the very fast and very slow vehicles, but
not many of the vehicles going at your own speed. Although Dawson and Riggs do not mention this, if the distribution of speeds is skewed such that more than half of the vehicles are going slower than the mean speed (a likely assumption), then more than half of the vehicles will perceive traffic to be faster than it really is.

1.5 Descriptive and Inferential Methods

A key characteristic of geographic data that brings about the need for statistical analysis is that they may often be regarded as a sample from a larger population. **Descriptive** statistical analysis refers to the use of particular methods that are used to describe and summarize the characteristics of the sample, while **inferential** statistical analysis refers to the methods that are used to infer something about the population from the sample. Descriptive methods fall within the class of exploratory techniques, while inferential statistics lie within the class of confirmatory methods.

To begin to better understand the nature of inferential statistics, suppose you are handed a coin, and you are asked to determine whether it is a “fair” one (that is, the likelihood of a “head” is the same as the likelihood of a “tail”). One natural way to gather some information would be to flip the coin a number of times. Suppose you flip the coin ten times, and you observe heads eight times. An example of a descriptive statistic is the observed proportion of heads – in this case $\frac{8}{10} = 0.8$.

We enter the realm of inferential statistics when we attempt to pass judgment on whether the coin is “fair”. We plan to do this by **inferring** whether the coin is fair, on the basis of our sample results. Eight heads is more than the four, five, or six that might have made us more comfortable in a declaration that the coin is fair, but is eight heads really enough to say that the coin is not a fair one?

There are at least two ways to go about answering the question of whether the coin is a fair one. One is to ask what would happen if the coin was fair, and to simulate a series of experiments identical to the one just carried out. That is, if we could repeatedly flip a known fair coin ten times, each time recording the number of heads, we would learn just how unusual a total of eight heads actually was. If eight heads comes up quite frequently with the fair coin, we will judge our original coin to be fair. On the other hand, if eight heads is an extremely rare event for a fair coin, we will conclude that our original coin is not fair.

To pursue this idea, suppose you arrange to carry out such an experiment 100 times. For example, one might have 100 students in a large class each flip a coin that is known to be fair ten times. Upon pooling together the results, suppose you find the results shown in Table 1.4. We see that eight heads occurred 8% of the time.

We still need a guideline to tell us whether our observed outcome of eight heads should lead us to the conclusion that the coin is (or is not) fair. The usual guideline is to ask how likely a result equal to or more extreme than the observed one is, if
our initial, baseline hypothesis that we possess a fair coin (called the *null* hypothesis) is true. A common practice is to accept the null hypothesis if the likelihood of a result more extreme than the one we observed is more than 5%. Hence we would accept the null hypothesis of a fair coin if our experiment showed that eight or more heads was not uncommon and in fact tended to occur more than 5% of the time.

Alternatively, we wish to reject the null hypothesis that our original coin is a fair one if the results of our experiment indicate that eight or more heads out of ten is an uncommon event for fair coins. If fair coins give rise to eight or more heads less than 5% of the time, we decide to reject the null hypothesis and conclude that our coin is not fair.

In the example above, eight or more heads occurred 12 times out of 100, when a fair coin was flipped ten times. The fact that events as extreme, or more extreme than the one we observed will happen 12% of the time with a *fair* coin leads us to accept the inference that our original coin is a fair one. Had we observed nine heads with our original coin, we would have judged it to be unfair, since events as rare or more rare than this (namely where the number of heads is equal to 9 or 10) occurred only four times in the 100 trials of a fair coin.

The approach just described is an example of the Monte Carlo method, and several examples of its use are given in Chapter 10. A second way to answer the inferential problem is to make use of the fact that this is a *binomial* experiment; in Chapter 3 we will learn how to use this approach.

1.6 The nature of statistical thinking

The American Statistical Association (1993, cited in Mallows 1998) notes that statistical thinking is:

(a) the appreciation of uncertainty and data variability, and their impact on decision making, and
(b) the use of the scientific method in approaching issues and problems.

Mallows (1998), in his Presidential Address to the American Statistical Association, argues that statistical thinking is not simply common sense, nor is it simply the
scientific method. Rather, he suggests that statisticians give more attention to questions that arise in the beginning of the study of a problem or issue. In particular, Mallows argues that statisticians should: (a) consider what data are relevant to the problem; (b) consider how relevant data can be obtained; (c) explain the basis for all assumptions; (d) lay out the arguments on all sides of the issue; and only then (e) formulate questions that can be addressed by statistical methods. He feels that too often statisticians rely too heavily on (e), as well as the actual use of the methods that follow. His ideas serve to remind us that statistical analysis is a comprehensive exercise – it does not consist of simply “plugging numbers into a formula” and reporting a result. Instead, it requires a comprehensive assessment of questions, alternative perspectives, data, assumptions, analysis, and interpretation.

Mallows defines statistical thinking as that which “concerns the relation of quantitative data to a real-world problem, often in the presence of uncertainty and variability. It attempts to make precise and explicit what the data has to say about the problem of interest”. Throughout the remainder of this book, we will learn how various methods are used and implemented, but we will also learn how to interpret the results and understand their limitations. Too often students working on geographic problems have only a sense that they “need statistics”, and their response is to seek out an expert on statistics for advice on how to get started. The statistician’s first reply should be in the form of questions: (1) What is the problem? (2) What data do you have, and what are their limitations? (3) Is statistical analysis relevant, or is some other method of analysis more appropriate? It is important for the student to think first about these questions. Perhaps a simple description will suffice to achieve the objective. Perhaps some sophisticated inferential analysis will be necessary. But the subsequent course of events should be driven by the substantive problems and questions of interest, as constrained by data availability and quality. It should not be driven by a feeling that one needs to use statistical analysis simply for the sake of doing so.

1.7 Special Considerations for Spatial Data

Fotheringham and Rogerson (1993) categorize and discuss a number of general issues and characteristics associated with problems in spatial analysis. It is essential that those working with spatial data have an awareness of these issues. Although all of their categories are relevant to spatial statistical analysis, among those that are most pertinent are:

(a) the modifiable areal unit problem;
(b) boundary problems;
(c) spatial sampling procedures;
(d) spatial autocorrelation or spatial dependence.
1.7.1 Modifiable Areal Unit Problem

The modifiable areal unit problem refers to the fact that results of statistical analyses are sensitive to the zoning system used to report aggregated data. Many spatial datasets are aggregated into zones, and the nature of the zonal configuration can influence interpretation quite strongly. Panel (a) of Figure 1.9 shows one zoning system and panel (b) another. The arrows represent migration flows. In panel (a) no interzonal migration is reported, while an interpretation of panel (b) would lead to the conclusion that there was a strong southward movement. More generally, many of the statistical tools described in the following chapters would produce different results had different zoning systems been in effect.

The modifiable areal unit problem has two different aspects that should be appreciated. The first is related to the placement of zonal boundaries, for zones or subregions of a given size. If we were measuring mobility rates, we could overlay a grid of square cells on the study area. There are many different ways that the grid could be placed, rotated, and oriented on the study area. The second aspect has to do with geographic scale. If we replace the grid with another grid of larger square cells, the results of the analysis would be different. Migrants, for example, are less likely to cross cells in the larger grid than they are in the smaller grid.

As Fotheringham and Rogerson note, GIS technology now facilitates the analysis of data using alternative zoning systems, and it should become more routine to examine the sensitivity of results to modifiable areal units.

1.7.2 Boundary Problems

Study areas are bounded, and it is important to recognize that events just outside the study area can affect those inside of it. If we are investigating the market areas of shopping malls in a county, it would be a mistake to neglect the influence of a large mall located just outside the county boundary. One solution is to create a buffer zone around the area of study to include features that affect analysis within the primary area of interest. An example of the use of buffer zones in point pattern analysis is given in Chapter 8.
Both the size and shape of areas can affect measurement and interpretation. There are a lot of migrants leaving Rhode Island each year, but this is partially due to the state’s small size – almost any move will be a move out of the state! Similarly, Tennessee experiences more out-migration than other states with the same land area in part because of its narrow rectangular shape. This is because individuals in Tennessee live, on average, closer to the border than do individuals in other states with the same area. A move of given length in some random direction is therefore more likely to take the Tennessean outside of the state.

1.7.3 Spatial Sampling Procedures

Statistical analysis is based upon sample data. Usually one assumes that sample observations are taken randomly from some larger population of interest. If we are interested in sampling point locations to collect data on vegetation or soil for example, there are many ways to do this. One could choose x- and y-coordinates randomly; this is known as a simple random sample. Another alternative would be to choose a stratified spatial sample, making sure that we chose a predetermined number of observations from each of several subregions, with simple random sampling within subregions. Alternative methods of sampling are discussed in more detail in Section 3.7.

1.7.4 Spatial autocorrelation

Spatial autocorrelation refers to the fact that the value of a variable at one point in space is related to the value of that same variable in a nearby location. The travel behavior of residents in a household is likely to be related to the travel behavior of residents in nearby households, because both households have similar accessibility to other locations. Hence observations of the two households are not likely to be independent, despite the requirement of statistical independence for standard statistical analysis. Spatial autocorrelation (or spatial dependence) can therefore have serious effects on statistical analyses, and hence lead to misinterpretation. This is treated in more detail in Chapter 8.

1.8 Structure of the Book

Chapter 2 covers methods of descriptive statistics – both visual and numerical approaches to describing data are covered. Chapters 3 and 4 provide the useful background on probability that facilitates understanding of inferential statistics. Inference about a population from a sample is carried out by first using the sample to make estimates of population characteristics. For example, a sample of individuals may result in data on income; the sample mean provides an estimate of the
unknown mean income of the entire population under study. Chapter 5 provides
details on how these sample estimates can be used – to both construct confidence
intervals that contain the true population value with a desired probability, and to
formally test hypotheses about the population values. The chapter also contains
details on the nature of sampling and the choice of an appropriate sample size.

Chapter 5 also contains descriptions of hypothesis tests designed to determine
whether two populations could conceivably have the same population characteris-
tic. For example, the two-sample difference of means test focuses upon the possi-
bility that two samples could come from populations that have identical means.
Chapter 6 covers the method of analysis of variance, which extends these two-sample
tests to the case of more than two samples. For example, data on travel behavior
(e.g., distance traveled to a public facility, such as parks or libraries) may be avail-
able for five different geographic regions, and it may be of interest to test the
hypothesis that the true mean distance traveled was the same in all regions. In
Chapter 7, we begin our exploration of methods that focus upon the relationship
between two or more variables. Chapter 7 introduces the methods of correlation,
and Chapter 8 extends this introduction to the topic of simple linear regression,
where one variable is hypothesized to depend linearly on another. Regression is
almost certainly the most widely used method of inferential statistics, and it is
given additional coverage in Chapter 9, where the linear dependence of one vari-
able on more than one other variable (i.e., multiple linear regression) is treated.

One of the basic questions geographers face is whether geographic data exhibit
spatial patterns. This is important both in its own right (where, e.g., we may wonder
whether crime locations are more geographically clustered than they were in the
past), and in addressing the fundamental problem of spatial dependence in geo-
graphic data when carrying out statistical tests. With respect to the latter, inferen-
tial statistical tests almost always assume that data observations are independent;
this, however, is often not the case when data are collected at geographic locations.
Instead, data are often spatially dependent – the value of a variable at one location
is likely to be similar to the value of the variable at a nearby location. Chapter 10
is devoted to methods and statistical tests designed to determine whether data
exhibit spatial patterns. Chapter 11 returns to the topic of regression, focusing
upon how to carry out analyses of the dependence of one variable on others, when
such spatial dependence in the data is present.

Finally, it is often desirable to summarize large datasets containing large num-
bers of observations and large numbers of variables. For example, it is often diffi-
cult to know where to begin when using census data for many different subregions
(e.g., census tracts) to summarize the nature of a geographic region, in part
because there are so many variables and many different subregions. Chapter 12
introduces factor analysis and cluster analysis as two approaches to summarizing
data. Factor analysis reduces the original number of variables to a smaller number
of underlying dimensions or factors, and cluster analysis places the observations
(i.e., the data for particular geographic subregions) into categories or clusters. The epilogue contains some closing thoughts on new directions and applications.

1.9 Datasets

1.9.1 Mobile Phone Signal Strength in Erie County, New York, US

The strength of a mobile phone signal is measured according to received signal strength intensity (RSSI). This dataset consists of 229 sample measurements of RSSI made within a portion of Erie County, which lies within the state of New York and contains Buffalo as its major city. For more information on RSSI, its spatial distribution, and applications to emergency accident notification, see Batta et al. (2001).

Associated with each measurement is a set of variables, including location coordinates, topographic measurements (slope and altitude), and variables related to the visibility of, and distance to, the nearest cell tower. Column variables are defined as follows:

1. ID number: These are sequential, and range from 1 to 229;
2. Value of RSSI;
3. y-coordinate;
4. x-coordinate;
5. slope;
6. altitude;
7. visibility;
8. range;
9. distance.

We will on occasion refer to subsets of this RSSI dataset:

1. Subset A: containing the 17 observations that have an x-coordinate less than 4713000 and a y-coordinate 672500 (these are the 17 observations in the extreme southwest portion of the study area). We will use these observations to carry out some calculations by hand – primarily in the exercises at the end of each chapter. The IDs for these 17 observations are 65–69, 72–74, 95–98, 100–103, and 163.
2. Subset B: contains the six observations with a y-coordinate greater than 677500 and an x-coordinate greater than 4720000 (these observations are in the extreme northeastern portion of the study area). We will use these observations for illustrations within each chapter. The IDs for these six observations are 17, 18, 19, 46, 117, and 118.

For subset B of the RSSI dataset, the mean value of RSSI is
The median RSSI value is equal to \(-105.5\), which is the average or mean of the two middle values:

\[
\frac{-108 - 103}{2} = \frac{-221}{2} = -105.5.
\]

The mode is equal to \(-113\), since it is the most frequently occurring value.

1.9.2 House Sales in Tyne and Wear

This file is an SPSS formatted file consisting of 562 cases (rows) and 53 variables (columns). The 562 cases represent houses in Tyne and Wear that were bought with mortgages from the Nationwide Building Society in 1991. The variables consist of a mixture of identifying information, housing attributes and census attributes from the wards in which the houses are located.

1.9.2.1 Definitions of variables

- **id**: an identification number. Note that it does NOT run 1 to 562 because some cases were removed from the original file due to missing data.
- **easting/northing**: OS grid reference for property.
- **postcode**: unit postcode for property. You can use this in www.upmys-treet.com to find more information on the area in which the property is located. This website will also give you a map of the general area highlighting the postcode. An alternative map can be obtained from www.streetmap.co.uk. Unit postcodes give a fine level of spatial resolution – approximately 15 properties share the same postcode in the UK.
- **ward**: six-digit census code.
- **ward name**: self-explanatory.
- **tywr_/tywr_id**: ward id codes for mapping.
- **district**: 1 = Gateshead
 2 = Newcastle
 3 = North Tyneside
 4 = South Tyneside
 5 = Sunderland.
- **price**: price house sold for in £ (1991 values remember!).
- **dprice**: a nominal variable which takes the value:
 1 if the house is below the average price for the county
 2 otherwise.
garage a dummy variable which takes the value:
1 if a garage is present
0 if a garage is not present.

centheat a dummy variable which takes the value:
1 if the house has full central heating
0 if the house has no or only partial central heating.

bedrooms number of bedrooms.
bathrooms number of bathrooms.
dateblt year in which house was built.
prewar a dummy variable which takes the value:
1 if the house was built in the period 1875–1914
0 otherwise.
interwar a dummy variable which takes the value:
1 if the house was built in the period 1915–1939
0 otherwise.
postwar a dummy variable which takes the value:
1 if the house was built in the period 1940–1959
0 otherwise.
sixties a dummy variable which takes the value:
1 if the house was built in the period 1960–1975
0 otherwise.
newest a dummy variable which takes the value:
1 if the house was built in the period 1976–1991
0 otherwise.
flr_area floor area of the house in square meters.
detached a dummy variable which takes the value:
1 if the house is detached
0 otherwise.
semidet a dummy variable which takes the value:
1 if the house is semi-detached
0 otherwise.
terrace a dummy variable which takes the value:
1 if the house is a terraced house
0 otherwise.
flat a dummy variable which takes the value:
1 if the house is a flat or maisonette
0 otherwise.
area area of the ward (ignore).
age0_15 percentage of ward population aged between 0–15.
age16_24 percentage of ward population aged between 16–24.
age25_64 percentage of ward population aged between 25–64.
age65_ percentage of ward population aged 65 or over.
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethnic</td>
<td>percentage of ward population non-white.</td>
</tr>
<tr>
<td>econact</td>
<td>percentage of ward population economically active.</td>
</tr>
<tr>
<td>unempl</td>
<td>percentage of ward population unemployed.</td>
</tr>
<tr>
<td>ownocc</td>
<td>percentage of ward housing owner-occupied.</td>
</tr>
<tr>
<td>privrent</td>
<td>percentage of ward housing privately rented.</td>
</tr>
<tr>
<td>publrent</td>
<td>percentage of ward housing publicly rented.</td>
</tr>
<tr>
<td>nocar</td>
<td>percentage of ward households without a car.</td>
</tr>
<tr>
<td>carshh</td>
<td>mean number of cars per household in ward.</td>
</tr>
<tr>
<td>crowdhh</td>
<td>mean number of households suffering overcrowding.</td>
</tr>
<tr>
<td>energy</td>
<td>percentage of ward population employed in energy.</td>
</tr>
<tr>
<td>mfg</td>
<td>percentage of ward population in manufacturing.</td>
</tr>
<tr>
<td>const</td>
<td>percentage of ward population employed in construction.</td>
</tr>
<tr>
<td>distbn</td>
<td>percentage of ward population employed in distribution.</td>
</tr>
<tr>
<td>finance</td>
<td>percentage of ward population employed in finance.</td>
</tr>
<tr>
<td>service</td>
<td>percentage of ward population employed in service sector.</td>
</tr>
<tr>
<td>sc_1/2/3/4/5</td>
<td>percentage of ward population in social class 1/2/3/4/5.</td>
</tr>
<tr>
<td>depchild</td>
<td>percentage of families with dependent children.</td>
</tr>
<tr>
<td>multfam</td>
<td>percentage of people living in multi-family units.</td>
</tr>
</tbody>
</table>