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Chapter 1

INTRODUCTION

The correlation matrix is a row-by-column arrangement of a set of correlation  
coefficients. The rows and columns refer to specific variables, which are 
measured features of the people, animals, or entities that behavioral science 
researchers study. For example, four variables assessed on people may  
be height, intelligence, birthweight, and shyness; three variables assessed on 
animals may be cortisol levels, reaction time, and counts of observed 
 behaviors; and three variables assessed on an entity (e.g., a school) may be 
the percent low income, teacher turnover rate, and average student 
 performance. A correlation matrix indicates the linear association between 
each pair of variables, such that the same variables in the same order label 
both the columns and the rows of the correlation matrix.

However, a correlation matrix is much more than an arrangement of 
individual correlation coefficients. Dozens of careful treatments of the cor-
relation coefficient itself—the elements of a correlation matrix—exist in the 
statistical literature (e.g., Chen & Popovich, 2002; Rodgers & Nicewander,  
1988) and in both sophisticated and introductory statistics textbooks. But 
understanding and appreciating the correlation matrix requires rather more 
careful study and mathematical sophistication than is required to under-
stand the correlation coefficient. Few treatments—at either the introductory 
or more advanced level—extend the pedagogy of correlations from the 
separate correlation coefficients to the overall integrated correlation matrix. 
The current book, directed toward students, researchers, and methodolo-
gists who need to understand and/or teach correlation matrices, aims to 
provide this treatment.

We begin with a brief review of the correlation coefficient and of the 
related measure, the covariance. Correlation and covariance provide the 
foundation for many statistical techniques used across social, behavioral, 
and biological science disciplines. They also appear often in engineering, 
medical research, operations research, the physical sciences such as physics 
and chemistry, and other disciplines. Because correlations and covariances 
are the starting points for many statistical procedures, any discipline that 
defines its methods through statistical analysis is likely to rely extensively 
on these two measures of relationship. We treat both correlations and 
covariances throughout, though we will emphasize the correlation and, 
thus, will typically refer only to the correlation in general treatment. We 
will make clear when we are treating one or the other specifically. We 
 distinguish the correlation and the covariance later in this chapter.
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The Correlation Coefficient: A Conceptual Introduction

The correlation coefficient describes the linear association between two 
variables. It answers the question, “When one variable decreases or 
increases, how does the other variable tend to decrease or increase?” Cor-
relation coefficients range from −1 to +1; magnitudes greater in absolute 
value (closer to +1 or −1) indicate a stronger association. Positive values 
indicate that as one variable increases (decreases), the other variable tends 
to increase (decrease)—that is, a positive or direct relationship. Negative 
values indicate that as one variable increases, the other variable tends to 
decrease (and vice versa)—that is, a negative or inverse relationship.

There are a number of different types of correlation coefficients, each 
with the purpose of quantifying the linear relationship between two varia-
bles. One way to categorize correlation coefficients into a taxonomy is 
defined based on the measurement level (Stevens, 1946) of the variables 
involved. That taxonomy assesses whether one or both variables are cate-
gorical (nominal), ordinal, or quantitative (interval or ratio). Often, “cor-
relation” is shorthand for the Pearson product–moment correlation 
coefficient, the most common correlation measure that is used when both 
variables are quantitative, measured at interval or ratio levels within the 
Stevens measurement level system. Other correlation coefficients have 
been defined as well. For two ordinal variables, Spearman’s rho, Kendall’s 
tau, and polychoric correlation could be used to measure the relationship. 
For two binary (dichotomous) outcome variables, the phi coefficient and 
the tetrachoric correlation are the appropriate measures of association. For 
one binary and one quantitative variable, the point-biserial and biserial 
 correlation coefficients are appropriate correlation measures.

Another classification system is the one used by Chen and Popovich 
(2002), which distinguishes between parametric and nonparametric mea-
sures. This distinction typically involves the question of whether a normal 
distribution is assumed to underlie one or both variables. For example, the 
formulas for polychoric and tetrachoric correlations assume that a normal 
distribution underlies the nonquantitative variables of interest. On the other 
hand, a nonparametric correlation “requires fewer assumptions and does 
not attempt to estimate population parameters” (Chen & Popovich, 2002,  
p. 79). Many nonparametric correlations are computed from variables that 
are naturally categorical (e.g., bright vs. dark colors, urban vs. rural  
residence) and do not have any underlying quantitative distribution, normal 
or otherwise. The phi coefficient and Spearman’s rho are examples of 
 nonparametric correlations.

A third way to classify correlations is in relation to the original correlation 
measure, the Pearson correlation. Several of the correlations defined above 
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are actually special cases of the Pearson correlation applied to nonquantita-
tive variables. For example, given two ordinal variables, we can rank order 
their values (within each variable); if we apply the Pearson correlation for-
mula to those rank orders, we compute a Spearman rho correlation coeffi-
cient. Similarly, suppose we have two variables, one a typical quantitative 
variable and the other a binary variable coded with 0 indicating one category 
and 1 the other. If we use the Pearson correlation formula on that coding 
scheme, we are computing a point-biserial correlation coefficient. The phi 
coefficient is also a special case of the Pearson correlation, defined using the 
Pearson formula for two variables, each measured as binary variables. On 
the other hand, the Kendall tau ordinal correlation, the biserial correlation, 
and the tetrachoric/polychoric correlations are defined using different for-
mulas that are not special cases of the Pearson correlation.

There exist many different ways to interpret a correlation coefficient. 
Rodgers and Nicewander (1988) showed that the correlation coefficient can 
be interpreted as one of several special kinds of means (e.g., the mean of 
the standardized cross products, or as a geometric mean), a special case of 
covariance, a special kind of variance, the slope of the standardized regres-
sion lines, a cosine, a function of the angle between two regression lines, 
and through several additional trigonometric interpretations. Standard 
introductory statistical textbooks show how to do null hypothesis signifi-
cance testing (NHST) using the correlation coefficient, and the correlation 
measure can also be interpreted as an effect size. To conclude our review of 
the correlation coefficient—the building block for the correlation matrix—
we present one of the standard formulas for the correlation coefficient. 
There exist many formulas that are algebraically equivalent, but conceptu-
ally distinct. We use one that allows us easily to demonstrate its relationship 
to a measure of covariance. If we define two quantitative variables, X and 
Y, with means X  and Y , respectively, for N observations (i.e., we define N 
pairs of scores), then the Pearson correlation coefficient can be computed 
using the following formula:

 =
∑ − −

∑ − ∑ −
r

X X Y Y

X X Y Y

( )( )

( ) ( )
XY 2 2

  (1.1)

The Covariance

Earlier, we referred to the covariance as a measure similar to the correla-
tion. The cleanest way to conceptualize the relationship between the cor-
relation and the covariance is to consider the correlation as a standardized 
version of the covariance. In other words, the correlation can be viewed as 
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a measure of relationship between standardized variables, whereas the 
covariance is the measure of relationship between the equivalent unstan-
dardized (or raw) variables. To appreciate this distinction requires under-
standing unstandardized and standardized variables.

When scores on a variable are collected using a particular scale of mea-
surement (e.g., intelligence quotient [IQ], with a mean of 100 and standard 
deviation of 16; a shyness scale, with a mean of 50 and a standard deviation 
of 5; or adult female height, with a mean of 65 inches and a standard devia-
tion of 3 inches), we typically refer to those measures as raw scores, mea-
sured on an unstandardized variable. If a respondent has a score of 68 inches 
on the height scale, and a score of 92 on the IQ scale, it is meaningless to 
compare those two raw scores; in no sense does the respondent have 24 more 
units of IQ than of height, because of the different scales of measurement.

This incompatibility is easily adjusted using standardization. Standard-
ized scores (also called z scores) are defined for a given variable by sub-
tracting the variable’s mean and dividing by the variable’s standard 
deviation; standardized scores indicate how far above or below the vari-
able’s mean that score is in terms of standard deviation (SD) units.  
Thus, the standardized score associated with a height of 68 inches is  
zheight = (68 − 65)/3 = 1; this computation tells us that a height of 68 is 1 
SD unit above the mean. The standardized score associated with an IQ of 
92 is zIQ = (92 − 100)/16 = −0.5; this computation tells us that an IQ of 
92 is 0.5 SD units below the mean. At this point, these two measurement 
scales have been standardized and are now at least loosely comparable.

This development allows us to distinguish the correlation from the 
covariance. The correlation can be defined in relation to z scores. A math-
ematically equivalent form of the Pearson correlation formula in Equation 
(1.1) is the following formula:

 =
∑

−
r

z z

N 1XY
X Y  (1.2)

Furthermore, the correlation has defined bounds of +1.0 and −1.0. The 
covariance, which has no defined bounds in general, depends on the scales 
of measurement of the two variables. The formula for the covariance 
between two variables, X and Y, is the following. Note the similarity 
between Equations (1.2) and (1.3).

 =
∑ − −

−
X Y

X X Y Y

N
Cov( , ) ( )( )

1
 (1.3)

Copyright ©2021 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot c

opy
, po

st, 
or d

istr
ibu

te



   5

In some research settings, it is important to define statistical procedures that 
account for the different scales of measurement of the variables. We will 
briefly touch on such issues when we discuss factor analysis and structural 
equation modeling (SEM) in Chapter 4. In such settings, covariances—and 
covariance matrices—are the preferred measures of association. In other 
settings, the researcher would prefer to equate the scales of measurement—
using standardization—so that differences in the scales’ means and  standard 
deviations can be ignored. In those settings, correlations—and correlation 
matrices—are the preferred measures of association. There is no correct 
answer to the question, “Which should be used, a correlation (matrix) or a 
covariance (matrix)?” The answer depends on the researchers’ goals and how 
the variables were measured. This book—ostensibly about correlation 
 matrices—is also about covariance matrices as well. By the end of the book, 
the reader will have some insight into when correlation matrices are prefer-
able to covariance matrices, and vice versa. We emphasize, however, that our 
typical (and default) treatment in this book is of the  correlation matrix.

The Correlation Coefficient and Linear Algebra:  
Brief Histories

It is not coincidence that the two developers of the correlation coefficient—
Francis Galton and Karl Pearson, in the late 1800s—were collectively inter-
ested in a wide range of scientific disciplines, including psychology, genetics, 
geography, astronomy, sociology, and biometrics (Stanton, 2001). These fields 
required a measure that would appropriately capture the association between 
two quantitative variables. Galton first proposed the idea of the correlation 
coefficient, stemming from his earlier work on regression (Galton, 1885), while 
conducting research on the correspondence between parents’ and their off-
spring’s physical traits. Through this work, he realized there existed an “index 
of correlation” that captured the linear association between heights in kinship 
pairs. By 1890, he understood that the idea of correlation extended beyond 
questions of heredity and could be applied broadly to any two quantitative 
 variables—and not simply to measures of the same construct, as he had origi-
nally thought (Stigler, 1989). However, it was his student, Pearson, who devel-
oped the mathematical formula and theory of the product–moment correlation 
that is still used most commonly today (Pearson, 1896).

Preceding the development of correlation by only a few decades was the 
development of linear, or matrix, algebra. Linear algebra grew out of the 
study of determinants for systems of linear equations in the early 1800s. 
Determinants are measures obtained from a matrix that reflect the linear 
relationships inside the matrix and, thus, are mathematically related to 

Copyright ©2021 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot c

opy
, po

st, 
or d

istr
ibu

te



6   

correlations. Interestingly, the mathematical concept of determinants (now 
wedded to the mathematics of matrices) developed well before matrix algebra; 
determinants were referenced at least as early as the 17th century by Leibnitz. 
In 1848, J. J. Sylvester first used the term matrix in a mathematical setting, the 
word matrix deriving from Latin for “womb,” “mother,” or “place where some-
thing develops.” In 1855, Arthur Cayley first referred to a matrix with a single, 
uppercase letter, thereby cementing matrices as entities more complete than 
and distinguishable from their separate elements. The first linear algebra text-
book, appropriately titled Linear Algebra by Hüseyin Tevfik Pasha, was written 
by happenstance almost contemporaneously with the development of the cor-
relation coefficient (though linear algebra developed in what is today Bulgaria, 
whereas correlation and regression developed largely in England).

The development of both matrix algebra and the correlation coefficient 
set the stage for the rapid development of the correlation matrix and statisti-
cal methods applied to the correlation matrix. Unsurprisingly, Pearson was 
one of the first psychometricians to incorporate the newly developed and 
quickly expanding field of matrix algebra into his conceptualization of the 
correlation coefficient. In his groundbreaking 1901 article, in which he 
proposed what would later become principal components analysis (PCA), 
Pearson demonstrated both the computation of a determinant and what a 
correlation matrix between q variables would look like (see Figure 1.1).

However, he did not refer to the mathematical entity he created as a cor-
relation matrix (the term matrix does not appear in the article), nor did he 
consider the correlation matrix beyond its convenient notation for produc-
ing the determinant. Three years later, Spearman (1904), a psychologist 
who made extensive contributions to statistics (including early work on 
factor analysis and adapting Pearson’s correlation formula for ordinal varia-
bles), published what may be the first empirical correlation matrix (except that 
the diagonal had been modified; Figure 1.2); these correlations relate measures 
among British schoolchildren of “talent” within these different “branches.”

Figure 1.1  The Determinant of a Generic Correlation Matrix, Appearing 
in Pearson (1901)
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Similar to Pearson, Spearman (1904) did not refer to his table as a 
“correlation matrix” but rather a “table of correlation,” with instructions 
to the reader for how to read the table: “Each number shows the correla-
tion between the faculty vertically above and that horizontally to the 
left” (p. 274).

Correlation matrices in scholarly literature had a small but consist-
ently increasing number of mentions in the decades following the con-
tributions of Spearman and Pearson. However, in recent decades, the 
explicit use of correlation matrices has increased exponentially. 
According to an informal search of the ProQuest online scholarly text 
database, there were 32 peer-reviewed records in the 1930s that 
 mentioned the term correlation matrix. By the 1980s, the number of 
records grew to 1,827. By the most recent count for the 2010s that num-
ber is 31,505, with references in mathematics, neuroimaging, environ-
mental science, applied psychology, and business journals. The wealth 
of attention to correlation matrices in applied research is likely due to a 
conflux of multiple factors, including modern computation, advances in 
data collection techniques, and advances in methods to analyze 
correlation matrices.

We provide here a brief summary of the history of correlation matrices 
to support what is well-known among statisticians, but which is less obvi-
ous for novice statistical students: Correlation matrices are more than just 
the convenient square arrangement of correlation coefficients. Inspection of 
correlation matrices facilitates a deeper understanding of the multivariate 
relationships among variables and allows for more complex theory devel-
opment and testing than can possibly emerge from inspection of the sepa-
rate disjoint correlations. One way to begin to appreciate the nuance of a 
correlation matrix is to recognize that not only does a correlation matrix 
include information about pairs of variables, but it also implicitly contains 
mathematical constraints that apply to relationships among triples of 

Figure 1.2  A Modified Correlation Matrix, Appearing in Spearman 
(1904, p. 275)
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variables, to quadruples of variables, and so on. This book is written to 
develop intuition and understanding for correlation matrices, the tests that 
may be conducted on them, the modeling that can be applied to them, and 
the graphical methods that may be used to display them.

Examples of Correlation Matrices

In the following paragraphs, we develop a number of examples of correla-
tion matrices (and, in several cases, the equivalent covariance matrix as 
well). These examples are based on real data collected in real research set-
tings. They are chosen to be disciplinarily broad, including variables that 
would be used in education, psychology, sociology, political science, eco-
nomics, communications, health care research, and other social/behavioral 
sciences settings. Once defined, we use these specific correlation matrices 
throughout the chapters of this book to illustrate principles and application 
of statistical methods relevant to correlation matrices.

As an example of how correlation matrices can motivate hypotheses or 
empirical analyses that are difficult to interpret using only bivariate correla-
tions, consider Tables 1.1 and 1.2 adapted from Humphreys et al. (1985). Each 
table represents a correlation matrix capturing how a construct (intelligence of 
boys and girls, respectively) correlates within person over development. 
Although inspection of any given element of the correlation matrix would 
indicate that boys’ (or girls’) intelligence at one time is positively associated 
with intelligences at another time, the correlation matrix structure makes sali-
ent that intelligence measurements closer together are more strongly corre-
lated than those measured further apart. Furthermore, the patterns of 
correlations are similar for boys and girls, and using methods presented in this 
book, we can formally test if the correlations are equivalent across gender in 
the population. In addition, at younger ages intelligence does not correlate as 
strongly with adjacent time points as it does at later time points. These kinds 
of observations would not be either obvious or easy to discuss if we relied on 
inspection of separate correlation coefficients. Within the context of a 
 correlation matrix, their description and study are straightforward.

Although the correlations in Tables 1.1 and 1.2 were calculated on indi-
viduals (i.e., children across years of development), correlation matrices 
are also frequently used to show relationships for which the unit of analysis 
is a group. As examples, we have included two correlation matrices based 
on groups. Table 1.3 demonstrates a correlation matrix, adapted from Elgar 
(2010), calculated from 33 countries for which the variables of interest are 
country-level indicators of income inequality, average tendency to trust 
others, public health expenditures, life expectancy, and adult mortality. 
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Table 1.1  Correlations Between Boys’ Intelligence Measured at 
Different Ages

Age 
(Years) 8 9 10 11 12 13 14 15 16 17

8 1.00 .60 .63 .67 .64 .59 .60 .62 .62 .53
9 .60 1.00 .74 .70 .68 .68 .68 .59 .60 .57
10 .63 .74 1.00 .79 .77 .70 .75 .71 .71 .60
11 .67 .70 .79 1.00 .87 .78 .75 .79 .81 .75
12 .64 .68 .77 .87 1.00 .84 .79 .77 .80 .76
13 .59 .68 .70 .78 .84 1.00 .85 .77 .77 .77
14 .60 .68 .75 .75 .79 .85 1.00 .84 .80 .75
15 .62 .59 .71 .79 .77 .77 .84 1.00 .88 .78
16 .62 .60 .71 .81 .80 .77 .80 .88 1.00 .85
17 .53 .57 .60 .75 .76 .77 .75 .78 .85 1.00

Note: The longitudinal sample of boys from the Boston area used a variety of measures of 
intelligence across the 10 yearly time points. Correlations in the original article were calcu-
lated pairwise, with sample sizes differing between 391 and 511; for examples throughout 
the book, we use a conservative N of 391. Adapted from Humphreys et al. (1985).

Table 1.2  Correlations Between Girls’ Intelligence Measured at 
Different Ages

Age 
(Years) 8 9 10 11 12 13 14 15 16 17

8 1.00 .67 .64 .70 .69 .64 .64 .64 .63 .54
9 .67 1.00 .65 .68 .73 .73 .69 .61 .61 .61
10 .64 .65 1.00 .78 .78 .73 .73 .73 .69 .59
11 .70 .68 .78 1.00 .88 .80 .79 .80 .80 .75
12 .69 .73 .78 .88 1.00 .85 .84 .79 .79 .77
13 .64 .73 .73 .80 .85 1.00 .85 .75 .77 .79
14 .64 .69 .73 .79 .84 .85 1.00 .81 .77 .75
15 .64 .61 .73 .80 .79 .75 .81 1.00 .90 .79
16 .63 .61 .69 .80 .79 .77 .77 .90 1.00 .87
17 .54 .61 .59 .75 .77 .79 .75 .79 .87 1.00

Note: The longitudinal sample of girls from the Boston area used a variety of measures of 
intelligence across the 10 yearly time points. Correlations in the original article were calcu-
lated pairwise, with sample sizes differing between 495 and 693; for examples throughout 
the book, we use a conservative N of 495. Adapted from Humphreys et al. (1985).
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Table 1.4 presents correlations for vital statistics—well-being, population, 
income, life expectancy, and rate of firearm deaths—for the 50 states in the 
United States.

Note that because the correlation coefficient is symmetric (e.g., the cor-
relation between healthy life expectancy and adult mortality is the same as 
the correlation between adult mortality and healthy life expectancy), the 
correlation matrix is also symmetric across the diagonal (more on this topic 
in Chapter 2). Therefore, only the upper-triangular half or lower-triangular 
half of the matrix need to be shown. In the examples in this chapter, we 
highlight several different common styles of presenting correlation matri-
ces in scholarly literature. For example, in Table 1.3, we used only the 
lower-triangular half of the table to show the entire correlation matrix. In 
Table 1.4, we showed both triangles of the table, and it can be easily veri-
fied that the correlations are symmetric by comparing equivalent correla-
tions (e.g., compare the correlation between the first and second variable to 
the correlation between the second and first; both correlations equal .050).

Table 1.3  Correlations Between Income Inequality, Country-Averaged 
Tendency to Trust Others, and Measures of Public Health

Variable
Income 

Inequality Trust
Public Health 
Expenditures

Healthy Life 
Expectancy

Adult 
Mortality

Income inequality 1.00

Trust −.51 1.00

Public health 
expenditures −.45 .12 1.00

Healthy life 
expectancy −.74 .48 .34 1.00

Adult mortality .55 −.47 −.13 −.92 1.00

Mean 0.363 3.9 5.6 68.0 0.129

SD 0.769 1.1 2.1 6.2 0.090

Note: Data came from the International Social Survey Program and included 48,641 
respondents across 33 countries. Income inequality was assessed using data from the World 
Bank World Development Indicators database. Trust was measured as a country-level aver-
age of participants’ rating of the statement “There are only a few people that I can trust com-
pletely,” defined on a 5-point Likert-type scale (1 = strongly agree, 5 = strongly disagree). 
Public health expenditures, healthy life expectancy, and adult mortality measures were 
accessed using data from the World Health Organization Statistical Information System. 
Adapted from Elgar (2010).
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In each of Tables 1.3 and 1.4, we included rows showing the mean and 
standard deviation for each variable. We provided the additional informa-
tion in these tables—and also in several future tables—so that readers can 
transform the correlation matrix into a covariance matrix. The formulas to 
transform a correlation matrix into a covariance matrix (and back again) 
rely on matrix algebra and are beyond the scope of treatment in the current 
book. We show, however, the relationship between a single correlation and 
its equivalent covariance:

 Cov(X, Y) = rXY*SDX*SDY (1.4)

This transformation requires the correlation and the standard deviations 
of the two variables. To provide a computational example, consider the cor-
relation between Well-Being (WB) and Population (POP) in Table 1.4,  
r  = .050. Using Equation 1.4, the covariance can be computed to be  
CovWB, POP = .050*1.20*720 = 43.2. The covariance between Well-Being 
and Per Capita Income (IN) is CovWB, IN = .422*1.20*4.24 = 2.15. Just as 
unstandardized variables cannot be compared with one another (see the 
height–IQ example above), covariances also cannot be compared. But 
because covariances transformed to correlations adjust out measurement 
scale differences and thus become comparable, correlations can be compared 
with one another in a meaningful way. Thus, we can report that the relation-
ship between Well-Being and Population (r = .050) is substantially weaker 
than the relationship between Well-Being and Per Capita Income (r = .422).  

Table 1.4 State-Level Vital Statistics for 2016–2017

Variable 1 2 3 4 5

1. Well-being 1.00 .050 .422 .708 −.416
2. Population .050 1.00 .129 .246 −.254
3. Per capita income .422 .129 1.00 .748 −.682
4. Life expectancy .708 .246 .748 1.00 −.803
5. Firearm death rate −.416 −.254 −.682 −.803 1.00

Mean 61.5 645 30.5 78.2 13.6

SD 1.20 720 4.24 1.76 5.32

Note: Well-being was measured using the Gallup-Sharecare Well-Being Index. Population 
was measured in units of 10,000 per estimates from the U.S. Census Bureau in 2016. Per 
capita income in units of $1,000 was reported for 2017 per the Chronicle of Higher Educa-
tion. Life expectancy is reported for 2017 by National Geographic. Firearm death rate was 
reported for 2017 per the Centers for Disease Control and Prevention.
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The two covariances (43.2 and 2.15), on the other hand, reflect both rela-
tionship differences and differences between the measurement scales and, 
thus, are not naturally comparable.

Consider also the correlations presented in Table 1.5, adapted from 
Leonard (1997), which summarize how the racial composition of a sports 
team is associated with the racial composition of the city that team repre-
sents for professional basketball (National Basketball Association 
[NBA]), football (National Football League [NFL]), and baseball (Major 
League Baseball [MLB]). The table is organized such that three correla-
tion matrices (one each for basketball, football, and baseball) are collated 
side by side and presented with only the upper-triangular half of the 
matrix. Organization of the correlation coefficients into matrices, and 
then concisely displaying these correlation matrices simultaneously, 
facilitates identification of patterns in the data. For instance, although 
there are near-perfect correlations between the percentages of Black resi-
dents in a franchise city in 1980 and 1990 for all three sports, indicating 
consistency in percent minority between 1980 and 1990 for the cities in 
the sample, the correlations are different across the sports for the number 
of Black teammates on teams between 1983 and 1989. We also see that 
professional baseball demonstrates consistently lower correlations 
between racial composition of a team and racial composition of the fran-
chise city than do professional basketball and football. Is there evidence 
that the associations between racial composition of cities and teams in 
baseball act differently from those in basketball and football in this time 
period? Is there evidence that the associations between racial composition 
of cities and teams in basketball act similarly to football? These hypoth-
eses are most efficiently demonstrated and tested in the context of cor-
relation matrices, rather than through the tedious and inefficient inspection 
of individual correlations.

The statistical methods for analyzing correlation matrices are useful 
for exploring how—and sometimes why—variables are intercorrelated. 
For example, consider the correlation matrix presented in Table 1.6 on 
childbearing intentions and outcomes (where we present the whole sym-
metric correlation matrix). The correlation matrix is slightly modified 
from data collected from the 1979 National Longitudinal Survey of 
Youth (NLSY79), a nationally representative sample that was first 
assessed in 1979 when youth were 14 to 22 years old; the sample has 
been followed at least biennially thereafter. A researcher may be inter-
ested in the roles of childbearing intentions and previous childbearing 
outcomes in predicting future childbearing outcomes. Methods like path 
analysis, or more generally SEM, are designed to investigate these 
underlying processes.
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Other statistical methods for analyzing correlation matrices, such as fac-
tor analysis and PCA, can be used to construct novel measures and assess-
ments. For example, the correlation matrix (presented in its lower-triangular 
form) in Table 1.7 shows nine questionnaire items measured on 6,007 
individuals from the NLSY79. Four of the items appear to assess positive 
self-esteem, three items appear to measure risk taking that may result in 
positive change, and the remaining two items appear to measure openness 
to others and new experiences. In Chapter 4, we will discuss how statistical 
methods can be used to construct scales to more completely explore if these 
items measure what we presume they measure.

Correlation matrices not only are useful for testing novel hypotheses but 
also can be vital to exploring patterns that might not be detected in the raw 
data, especially when the number of variables is exceedingly large. For 
example, consider the correlation matrix of index components for Standard 
& Poor’s 500 Index, which captures the performance of 500 leading U.S. 
businesses and serves as a metric for how U.S. stocks are performing. Vari-
ables from these 500 companies may be difficult to summarize, let alone 
envision, in their raw form. Approaches such as factor analysis, PCA, and 
graphical methods (all of which we develop in future chapters) can help 
shed light on the complex associations among very large correlation 
 matrices of this type.

Table 1.6  Correlations Between Childbearing Intentions and 
Childbearing Outcomes for 7,000 NLSY79 Respondents

Variable 1 2 3 4 5

1. Ideal number of children (1979) 1.000 .876 −.020 .484 .114
2.  Expected number of children 

(1979) .876 1.000 −.487 .389 .023
3. Number of children (1980) −.020 −.487 1.000 .120 .441
4. Ideal number of children (1982) .484 .389 .120 1.000 .207
5. Number of children (2004) .114 .023 .441 .207 1.000

Mean 2.53 2.36 0.143 2.40 1.98

SD 1.53 1.46 0.45 1.36 1.46

Note: Ideal number of children was truncated at 5+ children. Expected number of children 
was truncated at 4+ children. Total number of children born to the respondent was reported 
in 1980 and 2004. Polychoric correlations were calculated on each variable, and missing 
data were pairwise deleted. NLSY79 = 1979 National Longitudinal Survey of Youth.
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Summary

This book is about correlation matrices. We focus on helping the reader 
develop an appreciation and intuition for using correlation matrices. We are 
writing for the student or researcher in the social and behavioral sciences, 
but the contents will appeal to students and researchers in any discipline 
that uses correlations, and of course to statisticians and applied mathemati-
cians as well. We do not assume advanced mathematical knowledge; an 
introductory graduate (or even undergraduate) course in statistics will suf-
fice to get started with the material. We avoid references to advanced math-
ematical discourse, except in the few cases we believe advanced mathematics 
are necessary to understand the material we are presenting (and in those 

Table 1.7  Correlations Between Survey Items in the NLSY79  
(N = 6,007)

Variable 1 2 3 4 5 6 7 8 9

1. I am a person of worth. 1.0

2.  I have a number of good 
qualities.

.73 1.0

3.  I have a positive attitude 
with myself and others. .53 .57 1.0

4.  I am satisfied with myself. .45 .47 .63 1.0

5.  Willing to take risks in 
occupation

.06 .07 .06 .04 1.0

6.  Willing to take risks in 
other people

.05 .05 .03 .03 .37 1.0

7.  Willing to take risks in 
making life changes

.03 .05 .03 .01 .50 .39 1.0

8. Extraverted, enthusiastic .12 .11 .17 .13 .05 .05 .08 1.0

9.  Open to new experiences, 
complex

.10 .10 .13 .11 .08 .03 .10 .29 1.0

Mean 1.5 1.4 1.6 1.8 3.9 4.1 4.2 5.0 5.2

SD 0.7 0.6 0.7 0.7 3.2 2.9 2.9 1.8 1.6

Note: Items 1 to 4 were measured from 1 (strongly agree) to 4 (strongly disagree) in 2006 
and reverse coded for ease of interpretation. Items 5 to 7 were measured from 0 (unwilling 
to take any risks) to 10 (fully prepared to take risks) in 2010. Items 8 and 9 were measured 
from 1 (strongly disagree) to 7 (strongly agree) in 2014. NLSY79 = 1979 National Longitu-
dinal Survey of Youth.
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treatments, we are careful to warn mathematically less sophisticated stu-
dents that the material may be skipped or scanned without loss of continu-
ity). Researchers interested in deeper treatment of matrices in general are 
referred to a linear or matrix algebra textbook. Also outside of the scope of 
this particular book is deep treatment of statistical methods to analyze cor-
relation matrices. Whole courses and many introductory and advanced 
textbooks are devoted to these methods, such as factor analysis (e.g., Finch, 
2019; Kim & Mueller, 1978a, 1978b); PCA (Dunteman, 1989); SEM 
(Long, 1983; Preacher et al., 2008); and meta-analysis (Wolf, 1986). Each 
of these methods involves fitting models to correlation (or covariance) 
matrices, and we briefly review those at a conceptual level; we also refer 
readers who wish for more advanced treatment to appropriate references, 
such as those mentioned above, which are all available in the Sage Quanti-
tative Applications in the Social Sciences (QASS) series.

The organization of this book is as follows. In Chapter 2, we explore 
mathematical properties of correlation matrices. We minimize throughout, 
the use of equations or sophisticated mathematical operations (e.g., 
advanced matrix algebra). This chapter is pivotal for understanding the 
structure and function of correlation matrices. In Chapter 3, we provide 
details on common null hypothesis significance tests for correlation matri-
ces, including how to conduct these tests. In Chapter 4, we overview meth-
ods that use correlation matrices as the raw data, including factor analysis, 
SEM, and meta-analysis. In Chapter 5, we demonstrate graphical methods 
for displaying correlation matrices of varying sizes and structures, usually 
with reference to the correlation matrices that have been presented as exam-
ples in the current introductory chapter. In Chapter 6, we describe work on 
the geometric underpinnings of correlation matrices, which is where most 
of the recent modern study of correlation matrices in the statistical literature 
has been focused. This chapter can be skimmed or skipped by introductory 
students. Finally, in Chapter 7, we provide a short conclusion and summary 
of the book.
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