
One commonly hears that communication is a process, but most com-
munication research fails to exploit or live up to that axiom.

Whatever the full implications of viewing communication as a process
might be, it is clear that it implies that communication is dynamically sit-
uated in a temporal context, such that time is a central dimension of com-
munication (Berlo, 1977; VanLear, 1996). We believe that there are several
reasons for the gap between our axiomatic ideal of communication as
process and the realization of that ideal in actual communication research.
Incorporating time into communication research is difficult because of
the time, effort, resources, and knowledge necessary. Temporal data not
only offers great opportunity and advantage, but it also comes with its
own set of practical problems and issues (Menard, 2002; Taris, 2000). The
paucity of process research exists not only because of the greater effort and
difficulty in time series data collection but also because the exploitation
and analysis of time series data call for knowledge and expertise beyond
what is typically taught in our communication methods sequences in
graduate school, and mastering these techniques by self-teaching is diffi-
cult for many. This chapter is designed as the first step in developing the
knowledge and skills necessary to do communication process research.
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A time series is a set of observations obtained by measuring a single
variable regularly over a period of time. The number of news stories about
breast cancer appearing each month in the New York Times between 2000
and 2005 or the amount of time spent smiling in every 2-second interval
over a 10-minute conversation are both examples of time series.1 Time
series data are different from cross-sectional data in that observations have
a temporal order, and the analysis of such data leads to new and unique
problems in statistical modeling and inference. Characteristic properties
of a time series are that the data are not independently sampled, their dis-
persion varies in time, and they are often governed by a trend and cyclic
components. In particular, the correlation introduced by the sampling of
adjacent points in time can severely restrict the applicability of the many
conventional statistical methods traditionally dependent on the assump-
tion that observations are independent and that errors are therefore
uncorrelated. Statistical procedures that suppose independent and identi-
cally distributed data are, therefore, excluded from the analysis of time
series. The systematic approach for the statistical modeling of such data is
commonly referred to as time series analysis.

The main objective of this chapter is to offer readers a reasonably broad
and nontechnical exposition of traditional and contemporary time series
analysis methods as they apply to communication research. We intention-
ally leave out any technical details related to the statistical application of
these methods. Time series analysis is quite complex, and there are several
excellent texts on this topic that we would recommend to readers who 
are interested in applying time series analysis methods to their data 
(see Chatfield, 1989; Cromwell, 1994; Cromwell, Labys, & Terraza, 1994;
Gottman, 1981; McCleary & Hay, 1980; McDowall, 1980; Ostrom, 1990;
Sayrs, 1989; Shumway & Stoffer, 2000; StatSoft, 2003; Watt & VanLear,
1996). Our goal here is to provide a conceptual introduction to time series
analysis, one that (a) illustrates to readers the benefits of incorporating
time series analysis into the existing repertoire of communication research
methods, (b) describes the common application of time series analysis
and the potential weaknesses of this approach, and (c) introduces a set 
of standards that communication scholars should use when reporting on
or evaluating studies that employ time series analysis methods. Thus, we
begin with an overview of the potential application of time series analysis
methods in communication research and provide examples of how these
methods have been used by communication scholars to date. Our discus-
sion here focuses on the kinds of research questions that can be addressed
through this family of methods and the proper use of time series analysis
in communication research. Next, we review the basic terminology and
critical assumptions of time series analysis, distinguish between the time
domain approach and the frequency domain approach to time series
analysis, and outline the traditional approach to the analysis of time series
data. Here, our primary interest is to point out a number of problems in
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the application of these approaches to communication research and sug-
gest some alternatives.

Time Series Analysis Methods 
in Communication Research

The impact of time series analysis on scientific applications within the
field of communication can be partially documented by listing the kinds
of communication research to which time series methods have been
applied. In the area of mass communication research, time series analysis
methods have been most commonly applied to the study of agenda-setting
processes in a variety of contexts including AIDS policy (Rogers et al.,
1991), breast cancer screening by women 40 years and older (Yanovitzky
& Blitz, 2000), marijuana use among adolescents (Stryker, 2003), drunk
driving policy and behavior (Yanovitzky & Bennett, 1999), global warm-
ing (Trumbo, 1995), consumer confidence (Blood & Phillips, 1995; Fan &
Cook, 2003), and political judgments (Gonzenbach, 1996; Shah, Watts,
Domke, & Fan, 2002; Shah, Watts, Domke, Fan, & Fibison, 1999), to name
a few. For example, Yanovitzky and Blitz (2000) employed time series
regression analysis to compare the contribution of news coverage of mam-
mography screening and physician advice to the utilization of mammog-
raphy by women 40 years and older in the United States between 1989 and
1991. Data on mammography-related national media attention between
January 1989 and December 1991 were generated by analyzing the content
of seven nationally and regionally prominent newspapers (the New York
Times, Washington Post, Los Angeles Times, Chicago Tribune, Boston Globe,
St. Petersburg Times, and USA Today). All relevant news stories appearing
in these newspapers in a course of each month during the research period
(N = 36 months) were aggregated to represent the volume of media atten-
tion to this issue in that particular month. Comparable national-level data
on mammography utilization by women ages 40 and older and prevalence
of physicians’ advice to have a mammogram were compiled from the
Behavioral Risk Factor Surveillance System (BRFSS) that is administered
each month by the Centers for Disease Control and Prevention (CDC) to
a representative cross-section of noninstitutionalized adults nationwide.
The proportion of women 40 years and older in each month who had a
mammogram in the year preceding the interview served as the dependent
variable in the analysis. To estimate the prevalence of physician advice to
have a mammogram in each month, the proportion of women 40 years
and older indicating that having a mammogram in the past year was 
their physician’s idea was used. Using time series analysis to examine the
direction of influence between these three variables controlling for poten-
tial confounding variables, the researchers found that both channels of
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communication (news coverage and physician advice) accounted together
for 51% of the variance over time in mammography-seeking behavior by
women 40 years and older. Moreover, they found that physician advice was
particularly influential for women who had regular access to a physician,
while news coverage of mammography was more influential among
women who did not have regular access to a physician (mainly due to lack
of health insurance).

In this and other similar studies, the typical approach taken by the
researchers was to correlate national news coverage of issues over time
with outcomes related to public opinion or public policy on these issues
during the same time period (Dearing & Rogers, 1996). In virtually all
cases, some form of aggregated data was used and most studies were lim-
ited to the investigation of the relationship between two time series.
However, the time series methods employed in these studies vary consid-
erably, ranging from trend analysis (Brosius & Kepplinger, 1992;
Funkhouser, 1973; Smith, 1980; Tedrow & Mahoney, 1979) and cross-
correlation methods (Brosius & Kepplinger, 1992; Winter & Eyal, 1991), to
time series regression and traditional ARIMA methods (Gonzenbach,
1996; Shoemaker, Wanta, & Leggett, 1989; Trumbo, 1995; Yanovitzky &
Bennett, 1999), and to nonlinear methods (Fan, 1988; Fan & Cook, 2003;
Yanovitzky, 2002a).

There is little doubt that time series analysis methodology has enriched
agenda-setting research in a number of important ways, including the
ability to describe and analyze the agenda-setting process and to correlate
it with a host of hypothesized outcomes over time (for a complete review,
see Gonzenbach & McGavin, 1997). For example, by applying these meth-
ods, researchers were able to estimate lagged effects of news coverage on
individuals, groups, and institutions (Yanovitzky, 2002b) and calculate the
rate in which these effects decay for different issues (Fan, 1988; Watt,
Mazza, & Snyder, 1993). They were also able to compare media effects
across issues and populations (e.g., McCombs & Zhu, 1995; Yanovitzky &
Blitz, 2000) as well as to examine indirect (or mediated) effects between
the news, the policy agenda, and personal behavior over time (Yanovitzky
& Bennett, 1999). Perhaps more importantly, the use of these methods
allows more rigorous tests of agenda-setting theory (Gonzenbach &
McGavin, 1997) and facilitates multilevel theorizing and research (Pan &
McLeod, 1991; Slater, Snyder, & Hayes, 2006).

In the interpersonal domain, time series analysis has greatly enhanced
our understanding of the interaction patterns used by relational partners
including reciprocity and compensation, conversational control and coor-
dination among adult dyads and mother-infant dyads (Cappella, 1981,
1996; Street & Cappella, 1989; VanLear et al., 2005), relationship emer-
gence and development (Huston & Vangelisti, 1991; VanLear, 1987, 1991),
and decision emergence in small groups (Poole, 1981; Poole & Roth, 1989;
VanLear & Mabry, 1999).
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One of the best examples in the literature is the research program
carried out by Joseph Cappella during the 1980s and 1990s on reciprocity
and compensation as forms of mutual adaptation in dyadic conversations
(Cappella, 1981, 1996; Street & Cappella, 1989). For example, Cappella
(1996) and his colleagues coded conversational behaviors (e.g., vocalizing,
smiles, body orientation, eye gaze, illustrators) at every 0.3 second along
with an identification of which partner “held the floor” (as defined by Jaffe
& Feldstein, 1970). Each data point was an individual’s frequency of
that behavior in a 3-second window over 30 minutes of conversation
(Cappella, 1996). A cluster of behaviors (vocalizing, illustrator gestures,
and averting gaze) were highly correlated and clearly associated with
actually “holding the floor.” Cappella fit each dyadic partner’s time series
for the composite variable (“turn index”) using time domain time
series analyses (ARIMA). The ARIMA diagnostics showed that most of the
series displayed a first-order autoregressive process, with a few showing
trends, first-order moving averages, or some combination (see our later
discussion). He then ran individual time series analyses to correlate the
time series of speaker A with that of speaker B covarying out the effects of
actually “holding the floor.” Finally, treating each dyad’s analysis as a sep-
arate study, he used meta-analysis to aggregate the effects (mutual adapta-
tion scores) across dyads (see later discussion of aggregating postanalysis).
The fact that the turn index (along with actually holding the floor) exhib-
ited strongly complementary alternations between dyadic partners is
hardly surprising and almost trivial. However, by covarying out the effects
of actually “holding the floor,” Cappella (1996) was able to show that there
is still some mutual adaptation in the form of compensation between the
“turn-taking” complex of behaviors, especially among low-expressive
dyads and especially between newly acquainted dyads. Cappella (1996)
interprets this compensation as “exaggerated politeness” in which partners
respond to these behaviors by their partner to avoid “stepping into each
other’s conversational space” (p. 384).

IMPORTANT ADVANTAGES AND 
LIMITATIONS OF TIME SERIES ANALYSIS

There are a number of obvious reasons to collect and analyze time
series data when studying communication-related phenomena. Among
these are the desire to describe variation in variables of interest over time,
to gain a better understanding (or explanation) of the data-generating
mechanism, to be able to predict future values of a time series, and to
allow for the optimal monitoring and control of a system’s performance
over time (Chatfield, 1989). More importantly, however, time series analy-
sis can greatly enhance our ability to study human communication as a set
of dynamic phenomena and to devise more rigorous empirical tests of
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theoretical propositions about communication-related processes, their
determinants, and their effects. Many communication-related phenomena
are by definition time-bound processes, and many of the theories that
guide research in the field, such as cultivation (Gerbner, Gross, Morgan, &
Signorielli, 1986), diffusion of innovations (Rogers & Shoemaker, 1973),
structuration (Poole, Seibold, & McPhee, 1996), and relational pragmatics
(Fisher, 1978), treat communication, inherently, as a process. Yet, empiri-
cal investigations of communication-related phenomena are seldom
process oriented, with most being limited to the investigation of simulta-
neous or short-term relationships between communication variables of
interest (Poole, 2000; Watt, 1994).

Time series analysis methods can be a powerful instrument for study-
ing communication processes (Watt & VanLear, 1996). For one, they allow
researchers to avoid the pitfalls of studying a communication-related phe-
nomenon in isolation from its past and future. Most communication vari-
ables, being realizations of underlying communication processes, are ever
evolving (VanLear, 1996). For example, individuals often modify their ver-
bal and nonverbal communication many times in the course of a single
discussion (Cappella, 1996), and news coverage of a particular issue, such
as the AIDS epidemic, can greatly change in volume and content over a
period of a decade (Rogers, Dearing, & Chang, 1991). Some of the changes
observed in these variables over time may be random, but many tend to be
systematic or deterministic. For instance, certain variables, such as the use
of the Internet to search for health information, may trend upward over
time (Rice & Katz, 2001), others, such as ambiguity in group decision
making, will follow a curvilinear pattern over the course of deliberations
(VanLear & Mabry, 1999), while still others, such as television viewing,
may follow regular seasonal patterns (Barnett, Chang, Fink, & Richards,
1991) or shorter cycles of attention (Meadowcroft, 1996). Such trends and
cycles, in turn, may explain why communication-related phenomena vary
across units of analysis at a given point in time or for the same unit of
analysis at different points in time. Even stability over time (or inertia) can
be quite consequential in this respect. For example, suppose we would like
to explain, or even predict, the degree to which a certain person depends
on newspapers alone to get the news. We could probably come up with
several competing explanations, but our task would be less complicated if
we find out that this person has been relying primarily on newspapers to
get the news for the past 20 years. We could reasonably propose, then, that
this person’s current preference for newspapers as the source of news can
be explained, to a great degree, by this old habit. Importantly, this habit
can also help to explain why this person’s current preference for newspa-
pers is similar to or different from those of another person: If they share
the same habit, we would predict similarity in current behavior; if they do
not share this habit, we would predict a difference. The bottom line is that
studying variables in relation to their past can greatly enhance researchers’
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ability to more fully understand and to predict communication-related
phenomena.

Other than facilitating one’s capacity to model and to predict communi-
cation-related processes, time series analysis methods also have some desir-
able properties in terms of enhancing causal inference about the
relationships between phenomena of interest. One important advantage in
this respect is the ability to establish the temporal ordering of variables as a
way of delineating which of two variables may be the likely cause of the
other. Establishing temporal order between variables may not be an issue
when the researcher controls the timing of introducing the independent
variable, as is the case when experimental or quasi-experimental methodol-
ogy is used,2 but is crucial (though rarely sufficient) for drawing causal
inference in the context of cross-sectional or nonexperimental research
where researchers cannot have such control. In these cases, the ability to
establish temporal ordering can greatly enhance researchers’ ability to draw
causal inference from their data. For example, employing time series analy-
sis to the relationship between news coverage of mammography and the
observed increase in mammography utilization by women 40 years and
older between 1989 and 1991, Yanovitzky and Blitz (2000) found convinc-
ing evidence that news coverage preceded the observed behavior change,
thus supporting the argument that exposure to news coverage about mam-
mography contributed positively to mammography utilization during this
period. Similarly, VanLear, Brown, and Anderson (2003) found a series of
complex relationships between social support and emotional quality of life
among recovering alcoholics such that the supportiveness of an AA sponsor
predicted long-term improvement in emotional quality of life, but the emo-
tional quality of life predicted the perceived quality of the relationship with
the alcoholic’s significant other. In both cases, establishing the temporal
order between variables of interest afforded the opportunity to gain better
insight into the nature of the relationships that exist between these variables.

One other notable benefit of employing time series analysis when study-
ing the relationships between two or more time-bound variables is the abil-
ity to model and test hypotheses about lagged effects. For example, a recent
study using time series analysis showed an almost instantaneous effect of
news coverage of drunk driving on policymakers’ attention to the issue but
a delayed effect (of about three months) on policymakers’ legislative behav-
ior (Yanovitzky, 2002b). Similarly, in online support groups, the level of
self-presentation of a speaker affects not only the self-presentation and
other-orientation of the next speaker but of speakers at subsequent lags as
well (VanLear, Sheehan, Withers, & Walker, 2005). Standard methods,
including those that are seemingly sensitive to the temporal ordering of
variables such as repeated-measures ANOVA, are not well equipped to dif-
ferentiate instantaneous from delayed effects either because measures of all
variables are taken at one particular point in time (as is the case when
cross-sectional or posttest-only experimental data are used) or because
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repeated measurements of variables are frequently limited (typically, 2–3
time points at most) and taken at time intervals that are either too close or
too distant to capture lagged effects. In contrast, time series designs allow
for the collection of time-sequenced data over multiple and equally
sequenced time intervals and are better equipped to detect both instanta-
neous and delayed effects, providing that decisions about the frequency in
which data are collected are grounded in strong theoretical or empirical
rationale about the expected or hypothesized timing of effects.

Time series analysis may also be useful when comparing two or more
communication processes or estimating the effect that these different
processes have on a particular outcome. For example, Yanovitzky and
Stryker (2001) used time series analysis to estimate the extent to which
adolescents’ exposure to information about other peers’ use of alcohol
occurred through the mass media or interpersonal channels. By compar-
ing two different hypothesized processes of exposure (direct exposure to
media content vs. diffusion of information within peer networks), they
were able to determine that exposure to mass communication channels
had an independent contribution to adolescents’ perception of alcohol use
by peers (see also Zhu, Watt, Snyder, Yan, & Jiang, 1993).

Finally, time series analysis has the advantage of modeling both linear
and nonlinear relationships between variables over time. Most standard
data analysis methods used in communication research such as ANOVA
and OLS regression assume linear association between variables of inter-
est. Frequently, however, nonlinear functions provide better approxima-
tion of the true relationship between communication-related variables
(Brosius & Kepplinger, 1992; Poole, 2000). Thus, whereas this chapter
focuses mainly on linear time series methods with the goal of helping
novice users of time series analysis to acquire the methodological founda-
tions of this approach, readers should be aware of recent developments
regarding the application of nonlinear time series methods in communi-
cation and related disciplines (Fan, 1988; Heath, 2000; Poole, 2000).

On the other hand, many of the well-known problems of collecting and
analyzing longitudinal data are relevant to time series analysis. For exam-
ple, measuring participants repeatedly can influence their behavior and
perceptions over time in addition to the impact that independent vari-
ables of interest may have on these changes. Similarly, when subject attri-
tion is systematic, trends may reflect the changing nature of the sample
rather than the dynamics of the phenomena under investigation. Other
confounding influences may be created by historical events and changes in
measures or recording practices of variables over time. It is also often dif-
ficult to disentangle cohort effects from true temporal trends (Menard,
2002; Taris, 2000). One of the most significant of the temporal problems
is “regression toward the mean” where people with extreme scores in their
first measurement tend to score closer to the mean on subsequent mea-
sures (Campbell & Kenny, 1999). One way of dealing with many of these
problems is to use a revolving panel design in which measurements are
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repeated on a subgroup four times with different participants being
rotated into the sample at different waves of the study (Menard, 2002).
Subsamples can even be rotated in for several waves, rotated out for sev-
eral waves, and rotated back into the sample (Mansur & Shoemaker,
1999). Generally, differences can be observed between groups rotated into
the sample for the first time and those groups that have been in the sam-
ple for some time, and this has been referred to as “time-in-sample bias”
(Mansur & Shoemaker, 1999). In some cases, these effects can be statisti-
cally controlled for or appropriate transformations may be used to debias
the data if a rotating panel design is used.

SUMMARY

Given the importance of the potential contributions to achieving
progress in communication research, it is surprising that only a handful of
studies have applied this methodology to research problems relevant to
communication. There may be several reasons for this, including the cost of
collecting time series data (Tabachnick & Fidell, 2001), the inherent com-
plexity of this data analysis method (Shumway, 1988), and the fact that
communication-related variables are rarely included in longitudinal survey
systems that collect time series data such as the Monitoring the Future
Project and the General Social Survey (though such sources could be aug-
mented with comparable communication time series data such as aggre-
gated measures of news coverage of a particular issue). It is also worth
noting that time series analysis is not always the best approach to analyzing
longitudinal data. Time series approaches are generally appropriate for
answering research questions regarding systematic and random patterns of
change in a series over time, the association between two or more time series
over time, and the effect of interventions (also known as interrupted time
series analysis). When longitudinal designs feature large numbers of cases
(say, hundreds) but small numbers of repeated observations (e.g., less than
30), then other methods are often utilized such as hierarchical linear mod-
eling and latent growth models (see Chapter 3 of this volume). The strength
of the time series models discussed here is in their ability to detect, analyze,
and explain complex temporal processes. Their main weakness is in their
lack of a model for generalizability across cases. We will discuss the issue of
aggregating time series across multiple cases later in this chapter.

The Basics of Time Series Analysis

There are two separate but not necessarily mutually exclusive approaches to
time series analysis: the time domain approach and the frequency domain
approach. The time domain approach is motivated by the presumption that

Time Series Analysis 97

04-Hayes-45377.qxd  10/25/2007  3:19 PM  Page 97



correlation between adjacent points in time is best explained in terms of
the dependence of current values on past values of the same series. This
approach focuses on modeling some future values of a time series as a lin-
ear function of current and past values. The most popular time series
analysis techniques that follow this approach—autoregressive integrated
moving average (ARIMA) models—receive special attention in this chap-
ter. The frequency domain approach, on the other hand, assumes that the
primary characteristics of interest in time series analysis involve the peri-
odic or systematic sinusoidal variations found naturally in most data.
These periodic variations are often caused by external or environmental
factors of interest or may be an intrinsic feature of the phenomenon (e.g.,
biological rhythms). The partition of the various kinds of periodic varia-
tions is typically achieved through Fourier or spectral analysis, which we
discuss in detail later on.

BASIC TERMINOLOGY

Before we move to discuss the underlying logic of these two
approaches, it is useful to introduce the basic terminology of time series
analysis. A time series’ most basic unit of analysis is a point in time (i.e., a
second, an hour, a day, a week, a month, a year, etc.). For each point in
time we record the value of a certain variable (e.g., media salience, domes-
tic violence incidents, eye gaze, etc.). The temporal distance between two
time periods is a lag and is quantified by the number of time units that are
included in this time interval. A first-order series is a series in which one
lag is separating two correlated observations, while a second-order series is
a series in which two lags are separating two correlated observations, and
so on. A time series is said to be continuous when observations are made
continuously without interruption in time (e.g., heart beats as recorded by
EKG trace). A time series is said to be discrete when observations are taken
only at specific time intervals (usually equally spaced). An aggregated time
series is a discrete time series in which values are aggregated over equal
intervals of time (e.g., the total number of news stories on the economy
published each day in the Washington Post during the month of January).
A pooled time series of cross sections contains measures of a particular
variable taken from a relatively large number of units of observations
(such as individuals, countries, or organizations) over a relatively large
number of time points (also called “cross-sectional time series”).

One major consideration in analyzing a process captured by a time series
involves assumptions about the relationship between observations of the
same variable at different time points. Many standard data analysis methods
such as regression analysis assume that observations are independent of
each other and, therefore, the errors are uncorrelated. Time series analysis,
on the other hand, is based on the assumption that successive observations
are usually dependent and that we must account for the time order of the
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observations in our analysis of the time series data.3 This assumption is 
formalized in the notion of autocorrelation (also called serial correlation),
namely, the correlation of a variable with itself over successive time inter-
vals. Autocorrelation has one important consequence regarding time series
data: When successive observations are dependent, we can predict future
values from past observations of the same variable and not exclusively by
exogenous variables. If a time series future value can be predicted from past
values, the time series is said to be deterministic.

This characteristic of time series data forces us to identify the internal
mechanism that is capable of having produced the set of observed values of
a variable over time. With cross-sectional data, this mechanism is the
covariance of two or more variables at the same point in time. In contrast,
with time series data, this mechanism is assumed to be a stochastic process.
In order to provide a statistical setting for describing the character of data
that seemingly fluctuate in a random fashion over time, we assume that a
time series can be defined as a collection of random variables indexed
according to the order in which they are obtained in time. Put differently,
a stochastic process is a random function that varies in time. For this rea-
son, the future values of a time series (being a realization of a stochastic
process) can be predicted with only a certain probability of being correct.
This assumption does not mean that the process behaves in a completely
unpredictable manner, only that its behavior is partially governed by a ran-
dom mechanism. In fact, the Wold decomposition thereom holds that a
time series can be thought of as a combination of a trend, a deterministic
cycle, and a stochastic process (Gottman, 1981). VanLear (1996; VanLear &
Li, 2005) has used this theorem to suggest that communication processes
can be decomposed into scheduled or programmed processes (i.e., deter-
ministic) and unscheduled stochastic adaptations as they evolve over time.

A second common assumption in many time series techniques (e.g.,
time domain time series) is that the data are stationary. A stationary
process has the property that the mean, variance, and autocorrelation
structure do not change over time. Stationarity can be defined in precise
mathematical terms, but for our purpose we mean a series free of a trend
and periodic fluctuations (seasonality). In reality, however, the behavior of
most time series is determined by two basic classes of systematic compo-
nents: trend and seasonality. Trend represents a general systematic linear
or (most often) nonlinear component that changes over time and that
does not repeat in our data (e.g., a monotonic increase or decrease in the
level of the series over time). Seasonality may have a similar nature, but it
tends to repeat itself in systematic intervals over time. Those two general
classes of time series components may coexist in real-life data.

Figure 4.1 illustrates these phenomena through a hypothetical example:
local news coverage of outdoor events held in a particular community
between 1987 and 1995. Just by inspecting the time series visually, we can
detect a slight upward trend in the number of outdoors events covered by 
the local news media from year to year. In addition, as one may expect, news
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coverage in each year peaks during the spring and summer months and
declines during the winter months. These “cycles” are responsible for sea-
sonal effects on the level of the series. The problem with using standard
methods (e.g., regression analysis) to model the process underlying a time
series is that such deterministic components can introduce large systematic
errors into the estimation procedure that likely violate critical assumptions
such as the assumption that models’ residuals are uncorrelated or that they
are equally distributed among the different categories of the independent
variable (homoscedasticity). Thus, before we can use a time series as a “con-
ventional” variable, we must make sure it is stationary or free from any sys-
tematic and deterministic effects over time. If it is not a stationary time series,
it must be transformed into one (a procedure that is often referred to as
prewhitening) before standard statistical procedures could be employed.

The Time Domain Approach to 
Modeling Time Series Data

This basic rationale of time series analysis guides the common approach
to analyzing time series data. In this respect, traditional time domain
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approaches to time series analysis are best understood as techniques for
adapting standard regression methods to the problematic nature of time
series data. As noted above, the classical regression model was developed
for the static case, namely, when a dependent variable is allowed to be
influenced by current values of the independent variable. In the time
series case, it is desirable to allow the dependent variable to be influenced
by the past values of the independent variables and possibly by its own
past values. The need to incorporate these lagged relationships into the
explanation of a variable’s variance over time led to the development of
the autoregressive integrated moving average (ARIMA) model that was
popularized by Box and Jenkins (1976) and that seeks to uncover persis-
tent patterns in the behavior of time series, often so that unbiased esti-
mates of standard deviations can be calculated and that accurate forecasts
of future values can be generated.

It is worth noting that because of its power and flexibility, ARIMA is 
a rather complex technique—it is not easy to use, it requires a great deal
of experience, and although it often produces satisfactory results, those
results depend on the researcher’s level of expertise. Readers who are
interested in applying this approach could benefit from reading texts ded-
icated to these methods (e.g., McCleary & Hay, 1980) as well as books,
monographs, and book chapters that discuss the application of ARIMA
methods in agenda-setting research (e.g., Gonzenbach, 1996; Gonzenbach
& McGavin, 1997; Trumbo, 1995). Our discussion below leaves out much
of the technical details of fitting ARIMA models and focuses instead on
the gist of this approach, which can be summarized in a few basic steps:
(a) plotting the data against time, (b) possibly transforming the data,
(c) identifying the dependence order of the model (identification),
(d) estimating the ARIMA parameters (estimation), and (e) evaluating the
estimated model’s goodness of fit (diagnostics).

ARIMA METHODOLOGY: A PRIMER

The first step to take in any time series analysis is to plot the time series
against time. In many cases, the researchers can detect the presence of pos-
sible deterministic components just by inspecting the behavior of the
series of time, as is the case in Figure 4.1. Depending on the degree of fluc-
tuations in a time series behavior over time, one may also find it useful to
use some form of a smoothing procedure. Smoothing techniques are used
to reduce irregularities (random fluctuations) in time series data and thus
provide a clearer view of the true underlying behavior of the series. Two
common smoothing procedures are moving average and natural log
transformation, but other options exist (for more options, see Chatfield,
1989). However, the visual display may be misleading at times, particularly
when no systematic change in the series’ level can be detected. In these
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cases, researchers are strongly cautioned against concluding that the time
series is stationary before more formal statistical tests are performed (e.g.,
the Box-Ljung Q statistic).

Two additional tools that most common statistical packages (e.g., SPSS,
SAS, STATA) offer are the autocorrelation function (ACF) and the partial
autocorrelation function (PACF) correlograms. Autocorrelation correlo-
grams are a commonly used tool for checking randomness in a series’
behavior over time. This randomness is ascertained by computing corre-
lations for data values at varying time lags. If random, such autocorrelations
should be near zero for any and all time-lag separations. If nonrandom,
then one or more of the autocorrelations will be significantly nonzero.
Partial autocorrelations are the autocorrelations between two time points
separated by a certain lag controlling for any dependence on the inter-
mediate time points within this lag. If a lag of 1 is specified (i.e., there
are no intermediate elements within the lag), then the partial autocorre-
lation is equivalent to autocorrelation. In a sense, the partial autocorre-
lation provides a “cleaner” picture of serial dependencies for individual
lags (not confounded by other serial dependencies). Data can be
assumed to be stationary if no partial autocorrelation is found to be sta-
tistically significant. Autoregressive models are created with the idea that
the present value of the series can be explained as a linear function of
past values on this series.

Figure 4.2 shows the ACF correlogram for a hypothetical discrete series
measuring exposure to media messages about domestic violence per
100,000 viewers in a finite population over a period of 145 weeks (N = 145
equally spaced time points). Figure 4.3 presents the corresponding PACF
correlogram. The bars in each diagram represent the estimated autocorre-
lation coefficients and are bounded by 95% confidence intervals to detect
statistically significant autocorrelations. It is apparent from Figure 4.2 that
a significant degree of autocorrelation exists within the series (as indicated
by the presence of a statistically significant correlation in each of the lags),
which suggests a nonstationary series. The PACF plot in Figure 4.3 indi-
cates that the autocorrelation in the series is of first order (namely, that the
strongest autocorrelations exist between observations separated by a sin-
gle time lag).

When a time series is determined to be nonstationary, the ACF and
PACF correlograms have an important role in the identification of deter-
ministic components using the ARIMA approach. ARIMA stands for the
three types of mathematical processes that can be employed to generate a
stationary process: (1) autoregression (AR), (2) trend or integrated series
(I), and (3) moving average (MA). The autoregressive component in the
ARIMA model accounts for the autocorrelation or the magnitude of the
dependency between adjacent observations. These dependencies can be
removed by regressing the present value of the series on the linear func-
tion of past values of the same series at k lags and replacing the original

102 ADVANCED DATA ANALYSIS METHODS FOR COMMUNICATION RESEARCH

04-Hayes-45377.qxd  10/25/2007  3:19 PM  Page 102



series with the newly created residual series. The integrated component in
the ARIMA model addresses the issue of stationarity in the average level
of the series over time (note, however, that it does not address the issue of
stationarity in variance over time). Many, if not most, time series can be
made stationary by differencing. The method of differencing replaces each
time series observation with the difference of the current observation and
its adjacent observation k steps backward in time. The moving average
component is a bit less intuitive. It addresses the persistence of a random
shock (or a past error that cannot be accounted for by an autoregressive
process) from one observation to the next. A shock is an external event
that takes place at a particular point in the series and whose impact is not
contained to the point at which it occurs. The method of moving averages
dampens fluctuations in a time series by first taking successive averages of
groups of observations and then replacing each successive overlapping
sequence of k observations in the series with the mean of that sequence.

ACF and PACF correlograms are typically used to identify the three
ARIMA model’s parameters that correspond to each of these three com-
ponents. The autoregressive parameter (p) represents the number of time
lags that separate two correlated observations. Thus, a first-order series,
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abbreviated AR(1), is a series in which one lag is separating two correlated
observations, while a second-order series, AR(2), is a series in which two
lags are separating two correlated observations, and so on. The integrated
parameter (d) represents the shape of the trend that exists within the time
series: A first-order d parameter (d = 1) indicates a linear trend, a second-
order d parameter indicates a quadratic trend, and a third-order d para-
meter indicates a cubic trend. The moving average parameter (q) represents
the number of time lags (or window) over which the effect of a random
shock persists in the series. A first-order moving average parameter (q = 1)
means that current observations are correlated with shocks at lag 1, a
second-order q parameter means they are correlated with shocks at lag 2,
and so on. By convention, these parameters are represented as (p,d,q) and
denote the ARIMA term. Thus, an ARIMA (1,0,0) indicates a series char-
acterized by a first-order autoregressive component with no trend or mov-
ing average components. Particular ARIMA models tend to be associated
with a particular output of the ACF and PACF correlograms. For example,
an ACF output that demonstrates an exponential decay of serial correla-
tions of the type shown in Figure 4.2 and a PACF output demonstrating a
spike at lag 1 with no serial correlations for other lags, as is the case in
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Figure 4.3, suggest the presence of a first-order autoregressive process
(1,0,0). Note that the boundary lines around the functions in these fig-
ures are the 95% confidence bounds. If the bar representing an autocor-
relation at some lag crosses the boundary lines, the interpretation is that
this autocorrelation is significantly different from zero and that it should
be included in the ARIMA model. ACF and PACF representations of
other ARIMA processes are included in most basic texts about time series
(e.g., Box & Jenkins, 1976; McCleary & Hay, 1980) as well as manuals of
commonly used statistical packages (for example, the SPSS Trends man-
ual). At times, a series may have seasonal components (seasonal autocor-
relations) or structural dependency among observation separated by one
period or cycle, such as an annual cycle or 6-month cycles. Seasonal com-
ponents are evident in ACF and PACF plots that wear the shape of cycles
with strong positive ACFs equal to the length of the cycle and negative
ACFs equal to one half the period of the cycle. A seasonal ARIMA model
takes the seasonal components into account while using the same com-
ponents of a regular ARIMA (with seasonal parameters denoted by
uppercase letters: P,D,Q).

Once the ARIMA model’s parameters have been identified, they can be
used to estimate the ARIMA model that best fits the data. ARIMA models
use a maximum likelihood estimation procedure that is designed to max-
imize the likelihood of the observed series, given the estimated parameter
values. This can be done using any standard statistical package that
includes a time series module. The next step is the evaluation (diagnosis)
of the estimated model’s fit to the observed series. Here, a combination of
three strategies is recommended. The first is to verify that each ARIMA
parameter in the model is statistically significant using standard hypothe-
sis testing procedures (e.g., effect/standard error). If not significant, the
respective parameter can in most cases be dropped from the model with-
out affecting substantially the overall fit of the model. A second straight-
forward test involves the accuracy of the estimated model’s forecast of
future values of the series. Typically, this procedure entails estimating the
ARIMA model based on partial data (e.g., the first two thirds of the obser-
vations in a series) and using it to predict the remaining observations,
which are then compared with the known (original) observations.
However, a good model should not only provide sufficiently accurate fore-
casts, it should also produce small, random, and statistically independent
residuals. The patterns of ARIMA model–generated residuals are typically
inspected through the use of ACF and PACF correlograms. If no serial
dependencies are detected (namely, no remaining autocorrelations or par-
tial autocorrelations at various lags appear to cross the 95% boundary
lines in the ACFs’ and PACFs’ plots), the series is said to be stationary. If
serial dependencies are detected, the ARIMA model would need to be
reestimated using a different combination of parameters until stationarity
is achieved.
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The procedure described thus far pertains to a time series that consists
of single observations recorded sequentially over equal time increments
(or a univariate time series). To conduct a multivariate time series analysis,
several additional steps are necessary. An important requirement of the
ARIMA approach is that all time series involved in the analysis of multi-
variate relationships will be made stationary (or prewhitened) before stan-
dard correlation or regression methods are used. However, there is a
disagreement among researchers about the most appropriate prewhiten-
ing approach. Box and Jenkins recommended differencing (ARIMA 0,1,0)
as the preferred method of removing deterministic components from 
each nonstationary series (Box & Jenkins, 1976). However, some (e.g.,
Cappella, 1996) proposed that a better approach is to use the same
ARIMA model used to prewhiten the independent series to prewhiten the
dependent series, while others (e.g., Granger, 1969) prescribe that using an
autoregressive model (ARIMA 1,0,0) would suffice in most cases given
that most time series studied in the social sciences seem to be governed by
a first-order autoregressive process (McCleary & Hay, 1980). A reasonable
approach has been proposed by Watt (1994), who expressed the concern
that while first-order differencing may produce a stationary series, it also
destroys all information about the absolute value and the trend in the
original data that are theoretically important for explaining the variance
in the series over time. Watt proposed instead that variables be made sta-
tionary by fitting a least squares regression line to the data and creating a
transformed time series based on the regression residuals. This technique
was used successfully in a number of studies (e.g., Yanovitzky & Bennett,
1999; Yanovitzky & Blitz, 2000), though the other approaches work as well.
The disadvantage of this approach is that either linear or polynomial
trends can lead to unrealistic forecasts of values far beyond the temporal
horizon of the study. Therefore, this approach should be used with cau-
tion for forecasting.

Next, a combination of cross-correlation analysis and a Granger causal-
ity test typically allows researchers to sort out the causal direction between
two or more variables. The cross-correlation function is a measure of the
degree of the linear relationship between two time series as a function of
the time lag between the two. Conceptually, it is similar to the autocorre-
lation function except that it compares values in two different time series
instead of comparing different values within the same series. In cross-
correlation analysis, the correlation of one time series with a time-lagged
version of a second time series is examined, as illustrated in Figure 4.4,
where the association between exposure to media messages about domes-
tic violence and volume of calls received at a domestic violence hotline
within a week’s period is examined. A statistically significant correlation at
a certain lag indicates the time lag required for the independent (or lead-
ing) series to affect the dependent series. A cross-correlation matrix is com-
puted for each relationship of interest where in each case the independent
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series in Step 1 becomes the dependent series in Step 2. A time series will
be considered as leading another time series if statistically significant 
correlations are observed only in the lags that represent its effect on the sec-
ond time series. In this example, the only statistically significant cross-
correlation appears to be at lag +1, indicating that exposure to domestic
violence messages leads the behavior of calling a domestic violence hotline
such that messages received influence behavior one week later. On the
other hand, the nonsignificant effect at lag –1 indicates that we cannot say
that the number of calls to the hotline necessarily influences media mes-
sages about domestic violence.

However, when working with a set of variables and a range of lags,
a large set of correlations is produced and spuriousness becomes a con-
cern. If a nonrandom distribution of positive or negative correlations is
observed, the spuriousness hypothesis is rejected. If the only meaningful
and significant correlation is to be found at unity (time t0), the cross-
correlation analysis indicates the existence of covariation between the two
series. On the other hand, if no significant correlation is found in any of
the lags, one may conclude that the two time series are independent. The
information gathered from the cross-correlation analysis is used in the
computation of transfer function models. These are essentially multiple
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regression models in which the dependent variable is the given series’
residuals and the independent variables are created based on all the cross-
lagged correlations that were statistically significant.

The Granger causality test (Granger, 1969) compares the effect of one
time series on another in order to verify the causal direction between the
two time-bound variables. The basic logic of this test is that time series X
may be considered a cause of time series Y when X predicts Y significantly
better than Y predicts itself. To test this proposition, both series are
prewhitened first, and then Y is regressed on its previous (lagged) values
alone. In the next step, Y is regressed on both its lagged values and the
lagged values of X. After being transformed to white noise (i.e., made sta-
tionary), Y should have a very limited ability to predict itself based on its
previous value. The R2 for the initial and second models are then compared
with an F-test to determine if any predictive improvement due to the effect
of X is actually significant. The procedure is then repeated for the effect of
Y on X. In the final step, the regression coefficients representing the effect
of each series on the other controlling for previous values of the dependent
series are compared to determine which series (if any) leads the other.

LIMITATIONS OF THE ARIMA APPROACH 
AND SOME USEFUL ALTERNATIVES

The ARIMA approach, then, is an iterative model-building procedure
through which any deterministic component of the time series is identi-
fied and removed in order to make the data stationary before standard
data analysis methods could be used with time series data. Although pow-
erful and flexible, this approach has some known limitations (Shumway,
1988). For instance, the ARIMA method performs best when the number
of sequential observations available for analysis is 50 or greater, the unit of
time is consistent among all variables measured, and each time series is
uniform and unbroken. These may not be reasonable requirements for
much of the data collected or used by communication researchers, partic-
ularly when researchers have no control over data collection such as when
secondary time series data are used. The greatest difficulty involves the
analysis of unequally spaced time series observations. In data analysis
practice, such a characteristic of time series data is often ignored and stan-
dard analyses that treat data as equally spaced are used. This practice can
clearly introduce a significant bias into estimates of ARIMA parameters
leading to incorrect predictions. It is therefore necessary to use continu-
ous time series models for serial correlations (see Jones & Ackerson, 1990),
which can be quite complicated. In addition, ARIMA assumes that the val-
ues of the estimated parameters are constant throughout the life of a series
(i.e., stationarity of process), which may be a false assumption in some
cases. Furthermore, ARIMA can model only linear relationships between
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time series, whereas relationships between communication-related vari-
ables often take a nonlinear form. Finally, although much of time series
analysis focuses on analyzing the mean behavior of a time series, there has
been increasing attention to the study of volatility or variability of a time
series. ARIMA models assume constant variance and, therefore, cannot be
used in these cases. Autoregressive conditionally heteroscedastic (ARCH)
models (Engle, 1982) should be used instead.

More importantly, though, ARIMA is appropriate only for a time series
that is stationary (i.e., its mean, variance, and autocorrelation should be
approximately constant through time). This may not be a problem if one is
interested in forecasting future values of a series, a common objective of
time series analysis in economic research. However, communication schol-
ars are often more interested in studying theoretically meaningful commu-
nication processes than in forecasting. That is, they are far more interested
in explaining systematic changes in the behavior of variables over time
(such as trends and cycles in news coverage of issues) than removing them
statistically so that they may produce more precise prediction of future val-
ues on these variables. In this sense, as suggested by Watt (1994), the pow-
erful filters employed by ARIMA models remove much or all of the variance
in a time series that communication scholars may seek to explain.

A number of statistical alternatives to the ARIMA approach have
emerged in recent years (Brockwell & Davis, 2002), two of which are dis-
tributed lag models (Ostrom, 1990) and differential equation models (Fan,
1988; Zhu, 1992). Differential equation models can be used to model both
linear and nonlinear relationships in time, but a discussion of this
approach is beyond the scope of this chapter (for an overview, see Fan &
Cook, 2003). However, distributed lag models are briefly discussed here.

Distributed lag analysis is a specialized technique for examining the
relationships between variables that involve some delay. This technique
relies on a simple structural equation model that can be estimated by an
ordinary least squares (OLS) regression and is mathematically expressed
as follows:

Yt = b0 + b1Yt–1 + b2Xt–1 + et

where Yt is the dependent series at time t, Yt–1 is the dependent series
lagged by a single time point, Xt–1 is the independent series that is also
first-order lagged, and et is the error in estimation of Yt. The model esti-
mates three parameters: the constant or intercept (b0) and two partial time
series regression coefficients (b1 and b2). Similar to the logic of a Granger
causality test, X is said to cause Y when lagged values of X are significantly
related to Y after controlling for the previous history of Y (i.e., lagged val-
ues of Y). To ensure that the standard regression assumptions are not vio-
lated when estimating the model, three statistical tests are employed. The
first, the Durbin-Watson test of correlated errors (serial correlation), is
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designed to detect first-order autocorrelations. When there is no serial
correlation, the expected value of the Durbin-Watson statistic is approxi-
mately 2, whereas a value under 1.5 indicates a positive serial correlation
and a value above 2.5 a negative serial correlation. The second, tolerance,
estimates the amount of variation in a single predictor that is not
explained by its association to other predictors in a multiple regression
model. Tolerance values range from 0 (perfect collinearity) to 1 (no collinear-
ity). Finally, the autoregressive conditional heteroscedasticity (ARCH) test
(Engle, 1982) is used to test the null hypothesis of homoscedasticity in the
errors. This statistic has a chi-square distribution with 1 degree of free-
dom, where a nonsignificant result (i.e., a value of 7.8 or lower) indicates
that the errors are homoscedastic.

The Frequency Domain Approach to 
Modeling Time Series Data

The logic of frequency domain time series analysis is somewhat different
from that of time domain time series analysis. Time domain time series
generally treat temporal patterns (e.g., trends, seasonal or cyclical fluctua-
tions) as potential confounds that can create “spurious” relationships
between two time series and, thus, obscure the true influence of one series
on another. For example, if the level of self-disclosure of one person is cor-
related with the level of self-disclosure of his/her relational partner over
time, it could be because they are both following the same developmental
norm of incremental increase rather than either person’s disclosure level
influencing the disclosure level of the other (i.e., reciprocity). Likewise, if
TV advertising and TV programming follow the same seasonal pattern,
they may be correlated because of that common pattern rather than
because programming variation leads to advertising variation. Hence the
prewhitening process seeks to eliminate these confounding effects from the
data so that the effects of one variable on another can be observed.
Frequency domain time series, on the other hand, begins by looking for
hidden temporal patterns in the data (especially cyclical or periodic pat-
terns) and models them. Bivariate spectral analysis then attempts to corre-
late two time series by identifying and correlating the common patterns.
For example, Chapple (1970) argued that people’s physiological rhythms
entrain their behavioral rhythms, which in turn influence the rhythms of
their social interaction. In a series of studies, Warner (1996) utilized fre-
quency domain time series to demonstrate correlations between people’s
physiological rhythms and their communicative behavior as well as the
behavioral rhythms of their relational partners. Altman, Vinsel, and Brown
(1981) argued that as relationships evolve, relational partners experience a
dialectic tension between openness and closeness, and this leads to a cyclical
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pattern of openness behaviors over the course of a relationship; in success-
ful relationships, partners match and time their cycles of openness to cre-
ate a synchronous pattern. Utilizing frequency domain time series, VanLear
(1991) found that (a) relational partners did evidence cyclical patterns of
openness using both behavioral and perceptual data, (b) relational part-
ners generally matched and timed their behavioral cycles in a synchronous 
pattern, and (c) the nature of the cycles of openness were associated with
communication and relationship satisfaction. Despite these differences in
perspective, the Wiener-Khintchine theorem shows that mathematically,
the time domain and frequency domain are just two sides of the same coin.
They are mathematically the same (Gottman, 1981).

Frequency domain time series begins with the recognition that any time
series, from an extremely patterned process to a random, white-noise
process, can be represented by a series of weighted, orthogonal, sinusoidal
(i.e., sine and cosine) functions. These functions involve several parame-
ters. The height of the cycle from zenith to baseline is the Amplitude R.
The period is the time it takes to complete a single cycle. Instead of the
period, one could choose to use the frequency ω, the number of full rep-
etitions the function makes in a single unit of time (usually measured in
radians per unit of time). Finally, we identify the phase angle ϕ (in radi-
ans) with respect to the time of origin.

Given that any time series can be described by a set of weights repre-
senting the sinusoids’ amplitudes and frequencies, that set of weights is
given by the Discrete Fourier Transform (DFT). This set is chosen because
they are orthogonal, and given the sum of these N – 1 sine and cosine coef-
ficients, they can completely represent the data. Of course, that number of
functions offers no more parsimonious representation than the raw data,
so the goal is to find a small number of functions that, when inverted, will
adequately reconstruct the data with little error. Watt (1994; VanLear &
Watt, 1996) suggests a stepwise procedure that will identify the major pat-
terns in the data (Bloomfield, 1976). First, the amplitudes (or amplitudes
squared) of the Fourier coefficients are plotted against the Fourier fre-
quencies in what is called a periodogram (see Figure 4.6). The amplitude is an
indication of the strength of a given pattern in the data. Peaks in the peri-
odogram at various frequencies indicate that those frequencies are partic-
ularly strong patterns within the data. If the strongest pattern in the data
is not at one of the Fourier frequencies, the frequencies closest to the one
that actually represents the pattern will show a peak. When the strongest
function is found, a sinusoidal function representing that frequency is fit
to the data using least squares minimization, much as a linear trend is fit
to the data in ordinary regression. The frequency can be adjusted to find
the optimal frequency of the strongest component, even when it doesn’t
fall on one of the Fourier frequencies (Watt, 1996). If this model explains
a substantial portion of the variance of the series, then the residuals
around that function can be extracted, a DFT can be calculated for the
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residual series, a new periodogram can be plotted, and the next-strongest
frequency can be identified and fitted to the data. This iterative process is
continued until the series is adequately explained and no more major
functions are identified (VanLear & Watt, 1996). Once all meaningful
functions are identified, the series is a white-noise process. In a white-
noise process, the periodogram values will display an “exponential distri-
bution” (StatSoft, 2003). Watt (1998) has developed a program (FATS,
Fourier Analysis of Time Series) that will perform the stepwise procedure
and also can fit a priori cyclical models to a time series.

There are some cautions and limitations involved in the stepwise
method. It can be shown that while this procedure is very sensitive to the
identification of actual hidden patterns in the data, it can yield “false pos-
itives” (i.e., false evidence of a pattern that is only a random variation)
when examining both significance and amount of variance explained by a
function. This bias is most pronounced with short time series and dimin-
ishes as the length of the series increases (VanLear & Li, 2005). Therefore,
we recommend that several precautions be used. First, statistical signifi-
cance should not be used as the primary decision rule even though the
program (FATS) generates such tests. Second, this procedure should ide-
ally be used on very long time series data sets (hundreds of time points).4

Third, the researcher should assess what size of effect could be obtained by
a random process. This can be determined by running a number of ran-
dom series of the same length as the actual data in the study and adjust-
ing the decision rule to substantially exceed that baseline value. It can be
shown that this problem is mainly due to fitting such a large number of
potential functions in a stepwise procedure, such that this bias does not
pose a major problem when fitting an a priori model to the data (VanLear
& Li, 2005). Finally, it is wise to limit the extraction of sinusoidal compo-
nents to a small number of very strong components and to be wary of pat-
terns that do not have a clear theoretical interpretation. Nevertheless,
because this procedure can be shown to detect real patterns in data
obscured by random noise, it should not be completely shunned as an
inductive method, especially for uncovering hidden periodicity. We like to
use this procedure in conjunction with the examination of ACFs and
PACFs for detecting hidden patterns in time series data (VanLear & Li,
2005).5 Sometimes researchers will “smooth” their time series data and
apply these methods to the smoothed series. This is typically referred to as
spectral analysis (Gottman, 1981). When analyzed, a smoothed series will
not tend to show the random spikes in the periodogram. One looks for the
frequencies with the greatest “spectral densities,” which are the frequency
regions with many adjacent frequencies that account for most of the over-
all periodic behavior in the series.

Figure 4.5 provides a graphic view of this procedure on real data. A
dyad interacted over a mediated channel for about 10 minutes regarding a
controversial political issue. Each member was coded for smiling (smiles,
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doesn’t smile) every half second, and the number of smiling units in every
2 seconds of interaction comprised the measure. Each member of the dyad
in this analysis is represented by a time series of 248 repeated measures.

The data for person A is graphed in Figure 4.5 along with the first three
sinusoidal components extracted using the stepwise procedure. The peri-
odogram for this series is presented in Figure 4.6. The first component
extracted has a period of 64.7 (32.3 seconds). This component explains
20.3% of the variance in the series, which well exceeds what would be
expected if this were a random series. After the first component was ana-
lyzed, it was removed and the residual series was analyzed. The second
sinusoidal component has a period of 49 units (24.5 seconds) and
accounts for an additional 10% of the variance of the series (total R2 =
.305, ∆R2 = .102), which also exceeds what would be expected in a random
series of this length. The third component in the stepwise procedure has a
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Figure 4.6 The Periodogram for Speaker A’s Time Series of Smiling

period of 19.3 units ( 9.65 minutes) and explains an additional 6.7% of the
variance of the series (total R2 = .371, ∆R2 = .066). Although this exceeds
the average amount of explained variance for random series of this length,
it did so by a small amount. Therefore, the third component must be inter-
preted with more caution. Figure 4.6 shows what the periodic function
formed from the summation of these three components looks like as plot-
ted against the raw data. Figure 4.7 shows the ACFs for speaker A on the
same series. The significant negative ACF (–.27) at lag 31 and the corre-
sponding positive ACFs at lags 58, 59, and 60 (rs = .18, .21, and .18, respec-
tively) correspond closely to the first component revealed through the
stepwise Fourier analysis. This evidence suggests that speaker A’s smiling
behavior follows a periodic cyclical pattern.

Suppose that we have a theoretical reason to expect a cycle of a given
frequency/period. A sinusoidal function representing that frequency can
be fit to the data and assessed for the amount of variance explained.
Because we are fitting one function to the data, this procedure does not
contain the same potential for false positives as the stepwise procedure
(VanLear & Li, 2005). For example, one might predict that alcohol adver-
tising will follow the same seasonal cycle as TV programming. Or if one
has daily measures of mood or emotion, one might predict a weekly cycle
with lows on Mondays and highs on Fridays and that the same cycle might
be evidenced in certain spontaneous nonverbal behaviors known to com-
municate emotion. One could fit the cycle found in the emotion series to
the contemporaneous behavioral series.
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VanLear and Watt (1996) presents procedures in which these tech-
niques can be used in an experimental design to detect how an experimen-
tal stimulus affects not just the level of a variable but also the nature of
cycles that a whole time series displays (e.g., frequency, amplitude).
Likewise, models built on one part of a time series can be used to forecast
the future values of the series. In a related design (interrupted time series),
the technique can be used to model changes in processes occurring after a
significant event, whether the event was manipulated by the researcher or
was a naturally occurring phenomenon.

Finally, one of the most common ways to use frequency domain time
series is to examine the relationship between two concurrent time series.
This can be accomplished through cross-spectral analysis. In this approach,
the DFTs are calculated for each variable’s series, and the values of the two
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periodograms can be multiplied to produce a “cross-periodogram” (or if
the series are smoothed, a “cross-spectrum”). A cross-periodogram will
show large peaks at the frequencies that the two series have in common.
Cross-spectral analysis analyzes the cross-amplitude and the relative phase
of the two series at each frequency. A standardized measure analogous to
the square of the correlation at each frequency is given by the squared
“coefficient of coherence” (Gottman, 1981; StatSoft, 2003).6 Each series
has a gain value for each frequency in a cross-spectral analysis. The gain
values for each frequency are interpreted like the standardized betas in a
regression for that series at that frequency. The “phase shift” estimates are
measures of the extent that one series “leads” the other at each frequency.
SPSS is capable of conducting cross-spectral analysis of time series data.

For example, we can take the sinusoidal function that best fit the data for
person A in the above example and fit one-, two-, and three-component
models to the time series representing person B’s smiling. Figure 4.8 graphs
the fit of these functions. The first sinusoidal component from speaker A’s
model (period = 64.67) explained 4.9% of the variation in speaker B’s time
series. The two-component model from A’s series explained 13.8% (∆R2 =
.09) of the variation in B’s smiling over time. The three-component model
from A’s series explains 23.2% (∆R2 = .094) of the variance of B’s series. The
fit is both significant and meaningful. Speaker B’s smiling appears to match
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Figure 4.9 The Cross-Periodogram Between Speakers A’s and B’s Time Series of 
Smiling Behavior

the rhythm of speaker A’s smiling. We also matched speaker B’s model to
speaker A’s data as well. The first component of speaker B’s model
explained 5.4% of A’s variance, the second component explained 12.8% of
A’s variance, and the third component explained 13.8% of A’s variance.
Speaker A seems to match speaker B’s pattern, especially the second com-
ponent (a cycle with a period of 19), although the fit is not quite as good as
when matching speaker A’s model to speaker B’s data.

Figure 4.9 displays the cross-periodogram for speaker A’s and speaker B’s
smiling from the above example. This figure shows the largest peaks (cross
amp = .24) at the adjacent Fourier periods of 64 (ω = .098) and 51.2 (ω =
.123) and a smaller peak at period 19.7 (ω = .319, cross amp = .18). These
generally correspond to the peaks at the frequencies identified in modeling
the individual series. We can conclude that these two speakers tend to syn-
chronize their smiling behavior by matching their periodic behaviors.

Pooling and Aggregation of Time Series

The strength of time series analyses is assessing complex patterns and rela-
tionships over time and forecasting future values, not generalizing to a
population of similar cases. If one has a large number of cases and a
small number of replications, then one can use either structural equation
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modeling, where each time point is a different set of variables, or multi-
level modeling (see Chapter 3, this volume). The sophisticated types of
temporal patterns modeled by individual time series are not easily
assessed with these methods. Time series analyses are often useful when
one has a large number of repeated measures on a single or small number
of cases. An organizational communication consultant may have measures
on a single client company over an extended period of time. A marital
therapist may have interaction data on a single client couple. A media con-
sultant may have data on the client station or network over an extensive
period of time. Or we may have a research question that we wish to
explore on a small number of cases (e.g., the major networks) over an
extensive number of time periods. Many time series are conducted on data
that are already pooled or aggregated across cases (e.g., Nielsen ratings,
public opinion poll results, economic indices, and crime statistics).
However, often communication scholars wish to gather data over many
time points across many cases and conduct sophisticated analyses of tem-
poral processes. In such cases, the data must be aggregated or pooled.

There are two ways in which data can be pooled or aggregated: preanaly-
sis or postanalysis. Pooling time series from different cases before the
analysis has the great advantage that only one set of time series analyses
needs to be conducted. If there are a large number of cases (e.g., hundreds),
this is a tremendous advantage. Imagine conducting a whole set of analy-
ses like those presented in the above examples hundreds of times. However,
in order to pool the series before analysis, certain conditions should be met.
First, the various series representing different cases must be exactly con-
temporaneous and in sync. For example, if hundreds of TV viewers are
measured every 3 seconds as they watch the same half-hour program and
each measure in time is synchronized to the exact same point in the pro-
gram, then the data meet this first condition. However, if people do daily
monitoring of their communication with their significant other over a 
3-month period, each person’s time series is unlikely to be synchronized
with other participants if the relationships have been in existence for dif-
ferent periods of time and different participants begin their data recording
on different days. The second condition is that the different time series
must be homogeneous with regard to process across cases. If some series
trend, some are first-order autoregressive processes, some are first-order
moving average processes, and some show seasonal cycles that others do
not, then aggregating before analysis will lose important between-case vari-
ance and may be inappropriate. If one can meet the first condition, but is
unsure about the second, then a random subsample of the cases could be
assessed using individual time series as explained here. If all or nearly all of
the cases have the same kind of pattern of serial dependency, then the data
could be pooled and the pooled data assessed for that pattern.

When the conditions for preanalysis aggregation cannot be met, then
postanalysis aggregation can be employed. In this situation, each case is
analyzed separately as if it were a study unto itself, and then the results are
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aggregated using meta-analysis if the results are homogeneous. If the
results are not homogeneous, they can be input as scores for each case and
their variation analyzed using traditional statistics to search for moderat-
ing variables. For example, Street and Cappella (1989) used this approach
in the time domain to analyze the adaptation of children to adults’ speech
characteristics, and VanLear (1991) used this approach in the frequency
domain to analyze dialectic cycles of openness in relationships.

Conclusion

Gathering and analyzing time series data presents communication
researchers with a unique set of challenges. Meeting these challenges
requires time, effort, training, and skill. Nevertheless, we believe that this
extra training and effort are worth the payoff. Communication is a
dynamic process, and to be true to this axiom, we must be willing to
model communication over time. The present chapter is an introduction.
Scholars interested in the dynamic modeling of communication processes
are advised to study these techniques in depth.

Notes

1. Sometimes time series analyses are distinguished from repeated measures
with time series analysis referring to methods used to analyze data consisting of
large numbers of replications (at least 30 or so) and repeated measures referring
to data with smaller numbers of replications across a large number of cases. We
will use the term “time series” in the broader sense and use the term “pooled time
series” or “cross-sectional time series” for the latter group of analyses. The analyt-
ical methods we focus on are individual time series.

2. However, even experimental designs are not well suited for identifying rec-
iprocally or mutually causal processes involving feedback loops, which are usually
held to be central to viewing communication as a process (Berlo, 1960, 1977;
VanLear, 1996). Likewise, some variables cannot be easily or ethically manipu-
lated experimentally while retaining ecological validity.

3. Observations in a time series are not independently sampled even if there
is no autocorrelation or when the statistical dependency is removed. As a result,
inferential tests do not provide evidence of generalizability to other cases, though
they may be used to forecast values of future observations of the cases analyzed.

4. If significance tests are used, the problem actually gets worse with longer
time series, whereas if effect size is used (R2), the problem diminishes as the length
of the series increases.

5. SPSS uses a default of 16 lags for ACFs and PACFs, which is usually 
adequate for detecting AR and MA processes but is often too short to detect long
cycles. Because of the large number of ACFs possible in a series, ACFs can also
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lead to the detection of false positives if significance of one lag is a sufficient cri-
terion for the presence of a pattern.

6. One should be careful in interpreting these values by themselves, because
one can obtain large values for coherency when the spectral density values of both
series (the divisor when coherency is computed) are both small, indicating no
strong periodic components in the data.
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