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6
Step 5

Analyzing and Integrating the 

Outcomes of Studies

What procedures should be used to condense and 
combine the research results?

Primary Function in Research Synthesis

To identify and apply procedures for (a) combining results across studies 
and (b) testing for differences in results between studies

Procedural Variation That Might  
Produce Differences in Conclusions

Variation in procedures used to summarize and compare results of 
included studies (e.g., narrative, vote count, averaged effect sizes) can 
lead to differences in cumulative results.
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190 RESEARCH SYNTHESIS AND META-ANALYSIS

D
ata analysis involves reducing the separate data points 
collected by the inquirer into a unified statement about the 
research problem. It involves ordering, categorizing, and sum-

marizing the data, as well as performing inference tests that attempt to 
relate data samples to the populations they arise from. Inferences made 
from data analysis require that decision rules be used to distinguish 
systematic data patterns from noise (or chance fluctuation). Although 
different decision rules can be used, the rules involve assumptions about 
what the target population looks like (e.g., it is normally distributed) and 

(Continued)

Questions to Ask When Analyzing  
and Integrating the Results of Studies

1. Was an appropriate method used to combine and compare results 
across studies?

2. If a meta-analysis was performed, was an appropriate effect size metric used?

3. If a meta-analysis was performed, (a) were average effect sizes and 
confidence intervals reported and (b) was an appropriate model used 
to estimate the independent effects and the error in effect sizes?

4. If a meta-analysis was performed, was the homogeneity of effect sizes 
tested?

5. Were (a) study design and implementation features along with (b) other 
critical features of studies, including historical, theoretical, and practical 
variables, tested as potential moderators of study outcomes?

This chapter describes

 � A rationale for the use of meta-analyses
 � Statistical methods used to summarize research results including

�� Counting study outcomes
�� Averaging effect sizes
�� Examining the variability in effect sizes across studies

 � Some practical issues in the application of meta-analytic procedures
 � Some advanced meta-analytic procedures
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what criteria (e.g., the threshold probability for declaring a finding sta-
tistically significant) must be met before an existing pattern in the data 
is said to be reliable. The purpose of data analysis is to summarize and 
describe the data in a form that permits valid interpretation.

DATA ANALYSIS IN PRIMARY  

RESEARCH AND RESEARCH SYNTHESIS

Just as any scientific inquiry requires the leap from concrete operations 
to abstract concepts, both primary researchers and research synthesists 
must leap from patterns found in samples of data to more-general con-
clusions about whether these patterns also exist in the target popula-
tions. However, until the mid-1970s, there had been almost no similarity 
in the analysis techniques used by primary researchers and research 
synthesists. Primary researchers were obligated to present sample statis-
tics and to substantiate any inferences drawn from their data by provid-
ing the results of statistical tests. Most frequently, primary researchers (a) 
compared sampled means to one another or calculated other measures 
of relationship, (b) made the assumptions needed for conducting infer-
ence tests relating the sample results to populations, and (c) reported the 
probabilities associated with whether systematic differences in the sam-
ple could be inferred to hold in the target population as well.

Traditional statistical aids to primary data interpretation have 
not gone uncriticized. Some have argued that significance tests are 
not very informative since they tell only what the likelihood is of 
obtaining the observed results when the null hypothesis is true (e.g., 
Cohen, 1994; Cumming, 2012). These critics argue that in a population 
of people, the null hypothesis is rarely if ever true and therefore the 
significance of a given test is mainly influenced by how many partici-
pants have been sampled. Also, critics who are skeptical about the 
value of null hypothesis significance testing point to limitations in the 
generalization of these findings to the target population. No matter 
how statistically significant a relation may be, the results of a study are 
generalizable only to people like those who participated in that partic-
ular research effort.
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Skepticism about the value of statistics helps those who use them 
refine their procedures and keep their output in proper perspective. 
Nonetheless, most primary researchers use statistics and most would 
feel extremely uncomfortable about summarizing the results of their 
studies without some assistance (or credibility) supplied by statistical 
procedures. Saying, “I looked at the group means and they looked dif-
ferent to me” is simply not acceptable in primary research.

In contrast to primary researchers, until recently research synthe-
sists were not obligated to apply any statistical techniques in the inter-
pretation of cumulative results. Traditionally, synthesists interpreted 
data using intuitive rules of inference unknown even to themselves. 
Analysis methods were idiosyncratic to the perspective of that particu-
lar synthesist. Therefore, a description of the common rules of inference 
used in research syntheses was not possible.

The subjectivity in analysis of research literatures led to skepticism 
about the conclusions of many syntheses. To address the problem, 
methodologists introduced quantitative methods into the synthesis 
process. The methods use the statistics contained in the individual 
studies as the primary data for the research synthesis.

META-ANALYSIS

I suggested in Chapter 1 that the two events that had the greatest 
influence on state-of-the-art research synthesis are the growth in the 
amount of research and the rapid advances in computerized research 
retrieval systems. A third major influence is the introduction of 
quantitative procedures, called meta-analysis, into the research 
synthesis process.

The explosion in social science research focused considerable 
attention on the lack of standardization in how synthesists arrived 
at general conclusions from series of related studies. For many topic 
areas, a separate verbal description of each relevant study was no 
longer possible. One traditional strategy was to focus on one or two 
studies chosen from dozens or hundreds. This strategy failed to por-
tray accurately the accumulated state of knowledge. Certainly, in 
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areas where dozens or hundreds of studies exist, synthesists must 
describe prototype studies so that readers understand the methods 
used by primary researchers.

However, relying on the results of prototype studies to represent 
the results of all studies may be seriously misleading. First, as we have 
seen, this type of selective attention is open to confirmatory bias: syn-
thesists may highlight only studies that support their initial position. 
Second, selective attention to only a portion of all studies places little 
or imprecise weight on the volume of available tests. Presenting one or 
two studies without a cumulative analysis of the entire set of results 
gives the reader no estimate of the confidence that should be placed in 
a conclusion. Finally, selectively attending to evidence cannot give a 
good estimate of the strength of a relationship. As evidence on a topic 
accumulates, researchers become more interested in how much of a 
relationship exists between variables rather than simply whether a rela-

tionship exists at all.

Synthesists not employing meta-analysis also face problems when 
they consider the variation between the results of different studies. 
They will find distributions of results for studies sharing a particular 
procedural characteristic but varying on many other characteristics. 
Without meta-analysis, it is difficult to conclude accurately whether a 
procedural variation affected study outcomes; the variability in results 
obtained by any single method likely will overlap with the distributions 
of results of studies using a different method.

It seems, then, that there are many situations in which synthesists 
need to turn to meta-analytic techniques. The application of quantita-
tive inference procedures to research synthesis was a necessary 
response to the expanding literature. If statistics are applied appropri-
ately, they should enhance the validity of a synthesis’ conclusions. 
Quantitative research synthesis is an extension of the same rules of 
inference required for rigorous data analysis in primary research. If 
primary researchers must specify quantitatively the relation of the data 
to their conclusions, the next users of the data should be required to do 
the same. The inference procedure that sounded so ludicrous in the 
context of a single study (“The means looked different to me”) is no less 
so in the context of research synthesis.
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Meta-Analysis Comes of Age

Early on, meta-analysis was not without its critics, and some criticisms 
persist. Initially, the value of quantitative synthesis was questioned 
along lines similar to criticisms of primary data analysis (e.g., Barber, 
1978; Mansfield & Bussey, 1977). However, much of the criticism 
stemmed less from issues in meta-analysis than from inappropriate 
aggregation procedures that are more general, such as a lack of atten-
tion to moderating variables, that were incorrectly thought to be 
caused by the use of quantitative combining procedures when they 
were really independent (and poor) decisions on the part of the 
research synthesists. I will return to criticism of meta-analysis, and 
rigorous research synthesis in general, in the final chapter.

Meta-analysis is now an accepted procedure and its application 
within the social and medical sciences is on the ascent. Today, literally 
thousands of meta-analyses have been published, and the number 
published each year continues to grow larger. Figure 6.1 presents 
some evidence of this increasing impact in the sciences and social 
sciences. The figure is based on entries in the Web of Science Core 
Collection (retrieved April 3, 2015). It charts the growth in the number 
of documents retrieved by using the topics “research synthesis,”  
“systematic review,” “research review,” “literature review,” and/or 
“meta-analysis” for even-numbered years from 1996 to 2014. The figure 
indicates that the total number of references has risen every year 
without exception and is accelerating. Clearly, the role that research 
syntheses and meta-analysis play in our knowledge claims is large 
and growing larger.

When Not to Do a Meta-Analysis

Much of this chapter will describe some basic meta-analysis proce-
dures and how they are applied. However, it is important to state 
explicitly some circumstances for which the use of quantitative proce-
dures in research syntheses is not appropriate.

First, quantitative procedures are applicable only to research syn-
theses, not to literature reviews with other foci or goals (see Chapter 1). 
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Figure 6.1  Web of Science Core Collection Frequency of 
References to “Research Synthesis,” or “Systematic 
Review,” or “Research Review,” or “Literature 
Review,” or “Meta-Analysis”
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For instance, if a literature reviewer is interested in tracing the historical 
development of the concept “intrinsic motivation,” it would not be 
necessary for him or her to do a quantitative synthesis. However, if the 
synthesist also intended to make inferences about whether different 
definitions of intrinsic motivation lead to different research results, 
then a quantitative summary of relevant research would be appropri-
ate. Also, meta-analysis is not called for if the goal of the literature 
review is to critically or historically appraise the research study by 
study or to identify particular studies that are central to a field. In such 
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instances, a proper integration likely would treat the results of studies 
as an emerging series of events—that is, it would use a historical 
approach to organizing the literature review rather than a statistical 
aggregation of the cumulative findings. However, if the synthesists are 
interested in whether the results of studies change over time, then 
meta-analysis would be appropriate.

Second, the basic premise behind the use of statistics in research 
syntheses is that a series of studies address an identical conceptual 
hypothesis. If the premises of a literature review do not include this 
assertion, then there is no need for cumulative statistics. Related to 
this point, a synthesist should not quantitatively combine studies at a 
broader conceptual level than readers would find useful. At an extreme, 
most social science research could be categorized as examining a single 
conceptual hypothesis—social stimuli affect human behavior. Indeed, 
for some purposes such a hypothesis test might be very enlightening. 
However, the fact that “it can be done” should not be used as an excuse 
to quantitatively lump together concepts and hypotheses simply 
because methods are available to do so (see Kazdin, Durac, & Agteros, 
1979, for a humorous treatment of this issue). Synthesists must pay 
attention to those distinctions in the literature that will be meaningful 
to the users of the synthesis. For example, in the meta-analysis of the 
effects of choice on intrinsic motivation, we did not combine study 
results across the nine different outcome measures. Doing so would 
have obscured important distinctions among the outcomes and might 
have been misleading. Instead, the highest level of data aggregation 
was within outcome types. 

Another instance of too much aggregation occurs when a 
hypothesis has been tested using different types of controls. For 
example, one study examining the effect of daily aerobic exercise on 
adults’ levels of cognitive functioning might compare this treatment 
to a no-treatment control while another study compares it to a treat-
ment in which participants receive written information about the 
importance of exercise. It might not be informative to statistically 
combine the results of these two studies. To what comparison does 
the combined effect relate? Synthesists might find that a distinction 
in the type of control group is important enough not to be obscured 
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in a quantitative analysis (but an analysis of the moderating effects 
of different types of control groups might be appropriate here).

Third, under certain conditions meta-analysis might not lead to 
the kinds of generalizations the synthesists wish to make. For example, 
cognitive psychologists or cognitive neuroscientists might argue that 
their methodologies typically afford good controls and reasonably 
secure findings because the things they study are not strongly affected 
by the context in which the study is conducted. Thus, the debate about 
effects in these areas of research usually occurs with reference to the 
choice of variables and their theoretical, or interpretive, significance. 
Under these circumstances, a synthesist might convincingly establish 
generalization using conceptual and theoretical bridges rather than 
statistical ones.

Finally, even if synthesists wish to summate statistical results 
across studies on the same topic, they may discover that only a few 
studies have been conducted and that these use methodologies, par-
ticipants, and outcome measures that are decidedly different from 
one another. In circumstances where multiple methodological dis-
tinctions are confounded with one another (e.g., a particular research 
design occurs very frequently with a particular type of subject), the 
statistical combination of studies might mask important differences 
in research that make interpretation of the synthesis findings difficult. 
In these instances, it may make the most sense not to use meta- 
analysis, or to conduct several discrete meta-analyses within the same 
synthesis by combining only those studies that share similar clusters 
of features.

It is also important to point out that the use of meta-analysis is 

no guarantee that the synthesist will be immune from all inferential 

errors. The possibility always exists that the meta-analyst has incor-
rectly inferred a characteristic of the target population. As in the 
use of statistics in primary research, this can occur because the 
target population does not conform to the assumptions underlying 
the analysis techniques or because of the probabilistic nature of 
statistical findings. If you think that the population statistics do not 
conform to the assumptions of the statistical test you have chosen, 
find a more appropriate test or eschew the use of meta-analysis 
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altogether. In sum, then, an important question to ask when evalu-
ating a research synthesis is,

Was an appropriate method used to combine and compare 
results across studies?

The Impact of Integrating  

Techniques on Synthesis Outcomes

In Chapter 1 I described a study I conducted with Robert Rosenthal 
(Cooper & Rosenthal, 1980) in which we demonstrated some of the 
differences in conclusions that might be drawn by nonquantitative 
synthesists and meta-analysts. In that study, graduate students and 
university faculty members were asked to evaluate the same set of 
studies, but half used quantitative procedures and half used whatever 
criteria appealed to them. We found that the meta-analysts thought 
there was more support for the hypothesis and a larger relationship 
between variables than did the non-meta-analysts. Meta-analysts 
also tended to view future replications as less necessary than did 
non-meta-analysts, although this finding did not reach statistical 
significance.

It is also likely that the different statistical procedures used by 
meta-analysts will create variance in synthesis conclusions. Several 
different paradigms have emerged for quantitatively integrating 
research with a traditional inference testing model (Hedges & Olkin, 
1985; Rosenthal, 1984; Schmidt & Hunter, 2015), while others use a 
Bayesian perspective (Sutton, Abrams, Jones, Sheldon, & Song, 2000; 
United States Department of Health and Human Services Agency for 
Healthcare Research and Quality, 2013). The different techniques 
generate different output. Thus, the rules adopted to carry out quan-
titative analysis can differ from synthesist to synthesist, which might 
create differences in how synthesis results are interpreted. We can 
assume as well that the rules used by nonquantitative synthesists 
also vary, but that because of their inexplicit nature it is difficult to 
compare them formally.
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MAIN EFFECTS AND  

INTERACTIONS IN META-ANALYSIS

Before examining several of the quantitative techniques available to 
synthesists, it is important to take a closer look at some of the unique 
features of accumulated research results. In Chapter 2 on problem for-
mulation, I pointed out that most research syntheses first focus on 
tests of main effects that were carried out in the primary studies. This 
is largely because conceptually related replications of main effects 
occur more frequently than tests of three or more interacting variables. 
So, for example, you are likely to find in primary studies many more 
main-effect tests of whether choice influences intrinsic motivation 
than you are to find tests of interactions of whether this relationship is 
influenced by the number of choices given. Keep in mind that I am 
referring here to interaction tests within a single study, not your ability 
to test for the influence of number-of-choices at the synthesis level 
because different studies have varied in the number of choices they 
provide in their test of the main effect.

It is not that interactions tested in primary studies cannot be com-
bined. However, such replications are fewer and, we shall see in the next 
chapter, their interpretation can be a bit more complex. There are two 
different ways that interactions tested in primary research could be 
statistically combined across studies. First, the relationship strengths 
associated with each study’s interaction test could be aggregated. An 
alternative strategy would be to aggregate separately the relationship of 
two of the interacting variables at each level of the third variable. For 
instance, assume there exists a set of studies in which the primary 
researchers tested whether the effect of choice in intrinsic motivation 
differed depending on the number of choices given to participants. The 
synthesists could generate an estimate of the difference in intrinsic 
motivation depending on the number of choices given. They could 
aggregate all motivation measures taken under conditions where a 
choice between two alternatives was compared to no choice. They could 
do the same for measures taken after, say, two or three choices. Then, 
the different effect sizes could be compared. This would probably be 
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more useful and easily interpretable than a direct estimate of the mag-
nitude of the interaction effect. However, in order to do this, the primary 
research reports must contain the information needed to isolate the 
different simple main effects. The synthesist might also have to group 
numbers of choices (e.g., three to five choices and six or more choices) 
in order to have enough tests to generate a good estimate.

Because main effects are most often the focus of meta-analysts and 
in many instances meta-analysts interested in interactions reduce 
them to simple effects, my discussion of the quantitative combining 
techniques will refer to main effects only. The generalization to 
meta-analyzing interactions is mathematically straightforward.

META-ANALYSIS AND THE  

VARIATION AMONG STUDY RESULTS

In research syntheses, the most obvious feature of both main effects 
and interactions is that the results of the separate tests of the same 
relationship will vary from one study to the next. This variability is 
sometimes dramatic and requires us to ask where the variability 
comes from.

Sources of Variability in Research Findings

Differences in the outcomes of studies can be caused by two types of 
influences. The simplest cause is the one that is most often overlooked 
by nonquantitative synthesists—sampling variability. Even before the 
current interest in quantitative synthesis, Taveggia (1974) recognized 
this important influence:

A methodological principle overlooked by writers of . . . reviews is 
that research results are probabilistic. What this principle suggests 
is that, in and of themselves, the findings of any single research are 
meaningless—they may have occurred simply by chance. It also 
follows that if a large enough number of researches has been done 
on a particular topic, chance alone dictates that studies will exist 
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that report inconsistent and contradictory findings! Thus, what 
appears to be contradictory may simply be the positive and neg-
ative details of a distribution of findings. (pp. 397–398, emphasis 
in original)

Taveggia highlights one of the implications of using probability theory 
and sampling techniques to make inferences about populations.

As an example, suppose it was possible to measure the academic 
achievement of every American student as well as whether each stu-
dent did homework. Also, suppose that if such a task were undertaken, 
it would be found that achievement was exactly equal for students who 
do and do not do homework—that is, exactly equal achievement test 
mean scores existed for the two subpopulations. Still, if 1,000 samples 
of 50 homeworkers and 50 no-homeworkers were drawn from this 
population, very few comparisons between samples would reveal 
exactly equal group means. About half would show homeworkers 
achieving better and half would show no-homeworkers achieving bet-
ter. Furthermore, if the sample means were compared statistically 
using a t-test and the p �� .05 significance level (two-tailed), about 25 
comparisons would show a significant difference favoring homework-
ers while about 25 would favor no-homeworkers. This variation in 
results is an unavoidable consequence of the fact that the means esti-
mated by sampling will vary somewhat from the true population val-
ues. And, just by chance alone, some comparisons will pair sample 
estimates that vary from their true population values by large amounts 
and in opposite directions.

In the example given, it is unlikely that you would be fooled into 
thinking anything but chance caused the result—after all, 950 compar-
isons would reveal nonsignificant differences and significant results 
would be distributed equally for both significant positive and negative 
outcomes. However, in practice the pattern of results is rarely this clear. 
As we discovered in the chapter on literature searching, you might not 
be aware of all null results because they are hard to find. Complicating 
matters further, even if an overall relation does exist between two vari-
ables (i.e., the null hypothesis is false), some studies can still show sig-
nificant results in a direction opposite to the relation in the population. 
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To continue the example, if the average achievement of homeworkers 
is better than no-homeworkers, some comparisons of samples ran-
domly drawn from the two subpopulations will still favor no-home-
workers, the number depending on the size of the relation, the size of 
the samples, and how many comparisons have been performed. In 
sum, then, one source of variance in the results of studies can be 
chance fluctuations due to the inexactness of estimates based on sam-
ples drawn from populations.

A second source of variance in study outcomes is of more interest 
to synthesists. This variance in results is created by differences in how 
studies are conducted. This variance is added to the variance due to 
sampling participants. Just as people are sampled, you can think of a 
set of studies as a sample of studies drawn from a population of all 
possible studies. And, because studies can be conducted in different 
ways (just as people can differ in personal attributes) that affect the 
studies outcomes, a sample of studies also will exhibit chance variation 
from other possible samples of studies. For instance, the homework 
synthesists might find that studies comparing achievement among 
students who do and do not do homework have been conducted with 
students at different grade levels; with unit tests, class grades, or stan-
dardized tests as measures of achievement; and with an assortment of 
classes with different subject matters. Each of these differences in the 
studies’ methods or contexts could create variation in study results and 
therefore could create results that differ randomly from another sam-
ple of studies drawn from the same population of studies. This varia-
tion will be added to the variation caused by the sampling of study 
participants from the population of participants.

It is also possible that this variation associated with study-level 
differences is systematically related to the variation in study results. For 
example, homework studies conducted with elementary school students 
might produce results that differ systematically from studies conducted 
with high school students. In Chapter 2, the notion of synthesis-generated 
evidence was introduced to describe what we learn when we find asso-
ciations between study characteristics and study outcomes.

The existence of the two sources of variance in research results—
the one generated by sampling participants and the other by sampling 
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studies—raises an interesting dilemma. When discrepant findings 
occur within a set of studies, should you seek an explanation for them 
by attempting to identify systematic differences in results associated 
with differences in the methods used in studies? Or should you simply 
assume the discrepant findings were produced by variations due to 
sampling (of participants and/or study procedures)? Some tests have 
been devised to help you answer this question. In effect, these tests use 
sampling error (associated with participants or both participants and 
studies) as the null hypothesis. They estimate the amount of variance 
in findings that would be expected if sampling error alone were making 
the study findings different.1 If the observed variation in results across 
studies is too great to be explained by sampling error alone, then the 
null hypothesis is rejected. It suggests that the notion that all the 
results were drawn from the same population of results can be rejected.

In the sections that follow, I will introduce some of the quantita-
tive synthesis techniques that are available to you. I have chosen the 
techniques because they are relatively simple and broadly applicable. 
The treatment of each technique will be conceptual and introductory 
but detailed enough to permit you to perform a sound, if basic, 
meta-analysis. You can consult the primary sources cited in the text if 
(a) you want a more detailed description of these techniques and their 
variations, including how they are derived, and/or (b) your meta-analysis 
has some unique possibilities for exploring data in ways not covered 
here. For the discussion that follows, I have assumed you have a  
working knowledge of the basic inferential statistics employed in the 
social sciences.

Before I begin, though, there are three assumptions crucial to the 
validity of a conclusion based on an integration of statistical findings 
from individual studies. First and most obviously, the individual find-

ings that go into a cumulative analysis should all test the same compari-

son or estimate the same relationship. Regardless of how conceptually 
broad or narrow your ideas might be, you should be comfortable with 
the assertion that the included statistical tests from the primary stud-
ies address the same question. Second, the separate tests that go into the 

cumulative analysis must be independent of one another. Identifying 
independent comparisons was discussed in Chapter 4, on gathering 
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204 RESEARCH SYNTHESIS AND META-ANALYSIS

information from studies. You must take care to identify comparisons 
so that each one contains unique information about the hypothesis. 
Finally, you must believe that the primary researchers made valid 

assumptions when they computed the results of their tests. Thus, for 
example, if you want to combine the effect sizes resulting from com-
parisons between two means, you must assume that the observations 
in the two groups in the primary studies are independent and normally 
distributed, and that their variances are roughly equal to one another.

VOTE COUNTING

The simplest methods for combining independent statistical tests are 
the vote counting methods. Vote counts can take into account the 
statistical significance of findings or focus only on the direction of the 
findings.

For the first method, the meta-analysts would take each finding2

and place it into one of three categories: statistically significant find-
ings in the expected direction (I will refer to these as positive findings), 
statistically significant findings in the unexpected (negative) direction, 
and nonsignificant findings—that is, findings that did not permit rejec-
tion of the null hypothesis. The meta-analysts then might establish the 
rule that the category with the largest number of findings tells what the 
direction of the relationship is in the target population.

This vote count of significant findings has much intuitive appeal 
and has been used quite often. However, the strategy is unacceptably 
conservative and often can lead to erroneous conclusions (Hedges & 
Olkin, 1980). The problem is that using the traditional definition of 
statistical significance, chance alone should produce only about 5% of 
all findings falsely indicating a significant effect. Therefore, much fewer 
than one-third positive and statistically significant findings might indi-
cate a real difference exists in the target population. This vote-counting 
strategy requires that at least 34% of findings be positive and statisti-
cally significant before a result is declared a winner.

Let me illustrate just how conservative this approach is. Assume 
that a correlation of r � .30 exists between two variables in a population 
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and 20 studies have been conducted with 40 people in each sample 
(this would not be an uncommon scenario in the social sciences). The 
probability that the vote count associated with this series of studies 
will conclude a positive relation exists—if the plurality decision rule 
described in the preceding paragraph is used—is less than 6 in 100. 
Thus, the vote count of significant findings could, and often does, lead 
vote counters to suggest accepting the null hypothesis, and perhaps 
abandoning fruitful theories or effective interventions when, in fact, no 
such conclusion is warranted.

Adjusting the frequencies of the three types of findings (positive, 
negative, and null) so that the true expected percentage of each finding 
(95% null and 2.5% significant in each direction) is taken into account 
solves one problem but it highlights another one. We have seen that 
null results are less likely to be reported by researchers and are less 
likely to be retrieved by synthesists. Therefore, if the appropriate 
expected values are used in a vote-count analysis, it could often occur 
that both positive and negative significant findings appear more fre-
quently than would be expected by chance alone. Thus, it seems that 
using the frequency of nonsignificant findings in a vote count proce-
dure is of dubious value.

An alternative vote-counting method is to compare the frequency 
of statistically significant positive findings against the frequency of 
significant negative ones. This procedure assumes that if the null 
hypothesis prevails in the population, then the frequency of significant 
positive and negative findings is expected to be equal. If the frequency 
of findings is found not to be equal, then the null hypothesis can be 
rejected in favor of the prevailing direction. A problem with this vote-
count approach is that the expected number of nonsignificant findings, 
even when the null hypothesis is not true, can still be much greater 
than the expected number of either positive or negative significant 
findings. Therefore, this approach will ignore many findings (all nonsig-
nificant ones) and will be very low in statistical power.

A final way to perform vote counts in research synthesis involves 
tallying the number of positive and negative findings regardless of 
their statistical significance. In this approach, the meta-analyst cat-
egorizes findings based solely on the direction of their outcome, 
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ignoring their statistical significance. Again, if the null hypothesis is 
true—that is, if no relationship exists between the variables in the 
sampled population—we would expect the number of findings in 
each direction to be equal.

Once the number of results in each direction is counted, the 
meta-analyst can perform a simple sign test to discover if the cumula-
tive result suggests that one direction occurs more frequently than 
would be expected by chance. The formula for computing the sign test 
is as follows:

 

Z
N N

N
vc

p

�
�( ) ( )1

2

1
2

 (1)

where

Zvc � the standard normal deviate, or Z-score, for the overall series 
of findings;

Np � the number of positive findings; and

N � the total number of findings (positive plus negative findings).

The Zvc can be referred to a table of standard normal deviates to 
discover the probability (one-tailed) associated with the cumulative set 
of directional findings. If a two-tailed p-level is desired, the tabled 
p-value should be doubled. The values of Z associated with different 
p-levels are presented in Table 6.1. This sign test can be used in a vote 
count of either the simple direction of all findings or the direction  
of only significant findings, though using the direction of findings is 
recommended.

Suppose 25 of 36 comparisons find that adults given an intervention 
to increase aerobic activity exhibited better neurocognitive functioning 
than those in a no-intervention group. The probability that this many 
findings would be in one direction, given that in the target population (of 
all intervention tests) there is equal neurocognitive functioning exhibited 
by people in the two conditions, is p ��.02 (two-tailed) associated with a 
Zvc of 2.33. This result would lead the meta-analyst to conclude a positive 
intervention effect was supported by the series of findings.
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The vote-count method 
that uses the direction of find-
ings regardless of significance 
has the advantage of using 
information from all statistical 
findings. Still, it has some draw-
backs. Similar to the other vote-
count methods, it does not 
weight a finding’s contribution 
to the overall result by its sam-
ple size. Thus, a finding based 
on 100 participants is given 
weight equal to one with 1,000 
participants. Furthermore, the 
revealed magnitude of the rela-
tionship (e.g., the impact of the 
treatment) in each finding is not 
considered—a finding showing 
a large increase in cognitive 
functioning due to the interven-
tion is given equal weight to one 
showing a small decrease in 
functioning. Finally, a practical 
problem with the directional 
vote count is that primary 
researchers frequently do not 
report the direction of findings 
if a comparison proved statisti-
cally nonsignificant.

Still, the vote count of direc-
tional findings can be an infor-
mative complement to other 
meta-analytic procedures, and 
can even be used to generate an 
estimate of the strength of a rela-
tionship. Bushman and Wang 

z-score 
Area z 
to �z 

p-level 
2-tailed 

p-level 
1-tailed 

2.807 .995 .005 .0025 

2.576 .99 .01 .005 

2.432 .985 .015 .0075 

2.326 .98 .02 .01 

2.241 .975 .025 .0125 

2.170 .97 .03 .015 

2.108 .965 .035 .0175 

2.054 .96 .04 .02 

2.000 .954 .046 .023 

1.960 .95 .05 .025 

1.881 .94 .06 .03 

1.751 .92 .08 .04 

1.645 .9 .1 .05 

1.440 .85 .15 .075 

1.282 .8 .2 .10 

1.150 .75 .25 .125 

1.036 .7 .3 .150 

0.842 .6 .4 .20 

0.674 .5 .5 .25 

0.524 .4 .6 .30 

0.385 .3 .7 .35 

0.253 .2 .8 .40 

0.126 .1 .9 .45 

Table 6.1  Standard Normal 
Deviation Distribution

SOURCE: Adapted from: Wikipedia (2015), http://

en.wikipedia.org/wiki/Standard_normal_table
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(2009) provide formulas and tables that can be used to estimate the size 
of a population relationship given that the meta-analysts know (a) the 
number of findings, (b) the direction of each finding, and (c) the sample 
size of each finding. For example, let’s assume that each one of the 36 
comparisons between an activity intervention and no-intervention 
group was based on a sample size of 50 participants. Using Bushman and 
Wang’s technique, I find that when 25 of the 36 (69%) comparisons 
revealed better cognitive functioning in the intervention group, the most 
likely population value for a correlation between group membership and 
activity is r � .07. Of course, this example is artificial because I assumed 
all the sample sizes were equal. The calculations are more complex in 
many circumstances, not only because sample sizes vary but also 
because you will have comparisons (votes) for which you have no direc-
tion. This complicates the estimating technique greatly. In the past,  
when we have used this technique (see Cooper, Charlton, Valentine, & 
Muhlenbruck, 2000), we conducted the analyses several times, using dif-
ferent sets of assumptions. In general, this technique should be used with 
caution and only in conjunction with other meta-analytic techniques 
that produce conclusions that are less tentative.

In sum, then, meta-analysts can perform vote counts to aggregate 
results across individual studies by comparing the number of directional 
findings and/or the number of significant directional findings. Both of 
these procedures will be very imprecise and conservative—that is, they 
will accept the null hypothesis when more-precise methods suggest it 
should be rejected. The simple direction of results will not appear in 
many research reports in the first case, and nonsignificant findings can-
not contribute to the analysis in the second case. Vote counts can be 
described in meta-analyses but should be used to draw inferences only 
in combination with more sensitive meta-analysis procedures.

Combining Significance Levels

One way to address the shortcomings of vote counts is to consider 
combining the exact probabilities associated with the results of each 
comparison. Rosenthal (1984) cataloged 16 methods for combining the 
results of inference tests so that an overall test of the null hypothesis 
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can be obtained. By using the exact probabilities, the results of the 
combined analysis take into account the different sample sizes and 
relationship strengths found in each comparison. Thus, the combining-
significance-levels procedure overcomes the improper weighting 
problems of the vote count. However, it has severe limitations of its 
own. First, as with vote counts, the combining-probability procedures 
answer the “yes or no?” questions but not the “how much?” question. 
Second, whereas the vote-count procedure is overly conservative, the 
combining-significance-levels procedure is extremely powerful. In fact, 
it is so powerful that for hypotheses or relationships that have gener-
ated a large number of findings, rejecting the null hypothesis is so likely, 
because even very small relationships can produce significant com-
bined probabilities, that it becomes a rather uninformative exercise. 
For this reason, these procedures have largely fallen out of use.

MEASURING RELATIONSHIP STRENGTH

The primary function of the procedures described so far is to help 
meta-analysts accept or reject the null hypothesis. Until recently, most 
researchers interested in social theory and the impact of social inter-
ventions have been content to simply identify relations that have some 
explanatory value. The prevalence of this “yes or no” question was 
partly due to the relatively imprecise nature of social science theories 
and hypotheses. Social hypotheses typically were crudely stated first 
approximations to the truth. Social researchers rarely asked how 
potent theories or interventions were for explaining human behavior 
or how competing explanations compare with regard to their relative 
explanatory value. Today, as their theories and interventions are 
becoming more sophisticated, social scientists are more often making 
inquiries about the size of relationships.

Giving further impetus to the “how much?” question is a growing 
disenchantment with the null hypothesis significance test itself. As I 
noted earlier, whether a null hypothesis can be rejected is tied closely 
to the particular research project under scrutiny. If an ample number 
of participants are available or if a sensitive research design is 
employed, a rejection of the null hypothesis often is not surprising. This 
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state of affairs becomes even more apparent in meta-analyses that 
include a combined significance level, where the power is great to 
detect even very small relations. A null hypothesis rejection, then, does 
not guarantee that an important social insight has been achieved.

Finally, when used in applied social research, the vote-count and 
combined-significance-level techniques give no information on 
whether the effect of a treatment or the relationship between variables 
is large or small, important or trivial. For example, if we find that the 
relationship between whether a participant (a) is an adolescent or 
adult and (b) believes that women share some culpability when a rape 
occurs is statistically significant and the correlation is r � .01, is this a 
strong enough relationship that it should influence how interventions 
are delivered? What if the result is statistically significant and the cor-
relation is r � .30? This example suggests that the “yes or no?” question 
is often not the question of greatest importance. Instead, the important 
question is, “How much does the age of the participant influence 
beliefs about rape?” The answer might be zero or it might suggest a 
small or large relationship. The answer to this question could help 
meta-analysts (and others) make recommendations about how best to 
construct rape-attitude interventions so they are most effective. Given 
these questions, meta-analysts would turn to the calculation of average 
effect sizes. Also, as we shall see shortly, the null hypothesis question, 
“Is the relationship different from zero?” can be answered by placing a 
confidence interval around the “how much?” estimate, removing the 
need for separate null hypothesis significance tests.

Definition of Effect Size

In order to answer meaningfully the “how much?” question, we must 
agree on definitions for the terms magnitude of difference, relationship 

strength, or what generally is called the effect size. Also, we need meth-
ods for quantitatively expressing these ideas once we have defined 
them. Jacob Cohen’s (1988) book Statistical Power Analysis for the 

Behavioral Sciences presented what is now the standard definition of 
effect sizes. He defined an effect size as follows:
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Without intending any necessary implication of causality, it is 
convenient to use the phrase “effect size” to mean “the degree to 
which the phenomenon is present in the population,” or “the 
degree to which the null hypothesis is false.” By the above route it 
can now readily be clear that when the null hypothesis is false, it 
is false to some specific degree, i.e., the effect size (ES) is some spe-

cific non-zero value in the population. The larger this value, the 
greater the degree to which the phenomenon under study is mani-
fested. (pp. 9–10, emphasis in original)

Figure 6.2 presents three hypothetical relationships that illustrate 
Cohen’s definition. Suppose the results come from three experiments 
comparing the effects of an aerobic exercise intervention versus a no-
treatment control on adults’ cognitive functioning. The top graph pre-
sents a null relationship. That is, the participants given the intervention 
have a mean and distribution of cognitive functioning scores identical 
to the no-intervention participants. In the middle graph, the interven-
tion group has a mean cognitive functioning score slightly higher than 
that of the no-intervention group, and in the bottom graph the differ-
ence between intervention and no-intervention is even greater. A 
measure of effect size must express the three results so that greater 
departures from the null are associated with larger effect size values.

Cohen’s (1988) book contains many different metrics for describing 
the strength of a relationship. Each effect size index is associated with a 
particular research design in a manner similar to t-tests being associated 
with two-group comparisons, F-tests associated with multiple-group 
designs, and chi-squares associated with frequency tables. Next, I will 
describe the three primary metrics used by the vast majority of meta- 
analysts. These metrics are generally useful—almost any research out-
come can be expressed using one of them. For more-detailed information 
on these effect size metrics, as well as many others, the reader should 
consult Cohen’s (1988) book or Cumming’s (2012) book. However, Cohen 
describes several metrics that permit effect size estimates for multiple- 
degree-of-freedom comparisons (e.g., a comparison involving more than 
two group means, such as three religious groups’ attitudes toward rape), 
and these typically should not be used, for reasons that will be discussed 
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212 RESEARCH SYNTHESIS AND META-ANALYSIS

shortly. Thus, my description of metrics is restricted to those commensu-
rate with single-degree-of-freedom tests.

Standardized Mean Difference: The d-index or g-index

The d-index, or standardized mean difference measure, of an effect 
size is appropriate to use when the difference between two means is 

Figure 6.2  Three Hypothetical Relations Between an Exercise 
Intervention and a No-Intervention Group
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being compared. The d-index is typically used in association with 
t-tests or F-tests based on a comparison of two groups or experimen-
tal conditions. The d-index expresses the distance between the two 
group means in terms of their common standard deviation. By the 
term common standard deviation, I mean that the assumption is 
made that if we could measure the standard deviations within the 
two subpopulations sampled into the two groups, we would find 
them to be equal.

The hypothetical research results for three studies presented in 
Figure 6.2 comparing an intervention meant to promote aerobic activity 
among adults with a no-intervention condition illustrates the d-index. 
The dependent variable is some measure of neurocognitive functioning, 
maybe short-term memory or speed of processing. For the top graph, 
the research result supports the null hypothesis and the d-index equals 
zero. That is, there is no distance between the means of the exercise 
intervention and no-intervention group. The middle research result 
reveals a d-index of .40—that is, the mean of the intervention group lies 
4/10ths of a standard deviation to the right of the no-intervention 
group’s mean. In the third example, a d-index of .85 is portrayed. Here, 
the intervention group mean rests 85/100ths of a standard deviation to 
the right of the mean of the no-intervention group.

Calculating the d-index is simple. The formula is as follows:

 d
X X

SD
�

�1

within

2  (2)

where

X
–

l and X
–

2 � the two group means; and

SDwithin � the estimated common standard deviation of the two 
groups.

To estimate SDwithin, you can use the formula

 SD
n n SD

n n
within �

� � �
�

( ) ( )1 1
2

2 2
2

1 2

1 1

2

SD

�
 (3)

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

Copyright ©2017 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



214 RESEARCH SYNTHESIS AND META-ANALYSIS

where

SD1 and SD2 � the standard deviations of Group X1 and Group X2, 
respectively, and

n1 and n2 � the sample sizes in Group X1 and Group X2, respectively.

The d-index is not only simple to compute, but is also scale free. 
That is, the standard deviation adjustment in the denominator of the 
formula means that studies using different measurement scales can be 
compared or combined. So, for example, if one study of the exercise 
intervention’s effect used a measure of short-term memory as the out-
come measure and another study used a measure of processing speed 
as the outcome measure, it would make little sense to combine the two 
raw differences between the intervention and no-intervention group 
means—that is, combine the numerators of the d-index formula. How-
ever, it might make sense to combine the two results if we first convert 
each to a standardized mean difference. Then, if we assume the two 
outcomes measure the same underlying conceptual variable (i.e., cog-
nitive functioning), the two outcomes have been transformed to a 
common metric.

The variance of the d-index can be closely approximated using the 
following formula:

 v
n n

n n

d

n n
d �

�
�

1

1 1

2

2

2

22
�

( )
 (4)

where

all variables are defined as above.

The 95% confidence interval for the d-index is then computed as  
d � 1.95 √

–
vd ≤ d ≥ d � 1.95 √

–
vd.

In many instances, meta-analysts will find that primary research-
ers do not report the means, standard deviations, and sample sizes 
of the separate groups but do report the t-test or F-test associated 
with the difference in means, and the direction of their relationship. 
In such cases, Rosenthal (1984) provided a computation formula 
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that closely approximates the d-index and does not require the 
meta-analysts to have specific means and standard deviations. This 
formula is as follows:

 d
t

df
�

2

error

 (5)

where

t � the value of the t-test for the associated comparison, and

dferror � the degrees of freedom associated with the error term of 
the t-test (n1 � n2 � 2).

In instances where F-tests with a single degree of freedom in the 
numerator are reported, the square root of the F-value (i.e., t � √F) and 
its denominator degrees of freedom can be substituted in the above 
formula. Again, these approximations of the d-index assume the 
meta-analysts know the direction of the mean difference.

In fact, it is possible to calculate d-indexes from lots of different 
pieces of data and from numerous different designs. I refer you to the 
Practical Meta-Analysis Effect Size Calculator (Wilson, 2015). This free 
website will calculate the d-index for you based on 30 variations in the 
information you have available and for different research designs. 
Some meta-analysis software programs will also calculate effect sizes 
for you but you must be sure the available options match the type of 
data and design you are working with. If not, you can calculate the 
effect size using an (reliable) Internet calculator and transfer these to 
the meta-analysis program.

Removing small sample bias from estimates of population values: 

The g-index. A sample statistic—be it an effect size, a mean, or a stan-
dard deviation—typically is based on measurements taken on a small 
number of people drawn from a larger population. These sample sta-
tistics will differ in known ways from the values obtained if we could 
measure every person in the population. Meta-analysts have devised 
ways to adjust for the known biases that occur because effect size 
estimates based on samples are not always unbiased reflections of 
their underlying population values.
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Hedges (1980) showed that the d-index based on small samples may 
slightly overestimate the size of an effect in the population. However, the 
bias is minimal if the sample size is more than 20. If meta-analysts are 
calculating standardized mean differences from primary research based 
on samples smaller than 20, Hedges’ g-index should be used. The differ-
ence between the d and g formulas is simply that in the g-index formula 
the pooled estimate for the population standard deviation is substituted 
for the pooled sample standard deviation in the denominator of Formula 
(2). Conveniently, a search of the Internet for “Effect Size Calculators” will 
locate websites that will simultaneously calculate for you effect size esti-
mates based on several different formulas (e.g., Ellis, 2009). 

In addition to the small sample bias in effect size estimates meta- 
analysts should always be cautious in interpreting any statistics based on 
a small number of data points. When samples are small, a single extreme 
value can create an exceptionally large effect size estimate.

Choosing an estimate for the standard deviation of the d-index. 
Clearly, an important influence on the d-index is the size of the standard 
deviation used to estimate the variance around group means. I men-
tioned previously that the d-index formula is based on the assumption 
that the standard deviations would be equal in the two groups if they 
could be measured precisely. Many times, meta-analysts have no choice 
but to make this assumption because the d-index must be estimated 
from an associated t-test or F-test, which also makes this assumption. 
However, in instances where information about standard deviations is 
available and they appear to be unequal, the meta-analyst can choose 
one group’s standard deviation to serve as the denominator in the d- 
index for purposes of standardizing the mean difference. For example, if 
an intervention and no-intervention group are being compared and the 
standard deviations appear to be different (perhaps because the inter-
vention shifts the group mean and also creates greater variance in out-
comes), then the control group standard deviation should be used.

Effect Sizes Based on Two  

Continuous Variables: The r-Index

A second effect size, the r-index, is simply the Pearson product-moment 
correlation coefficient. The r-index is the most appropriate metric for 
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expressing an effect size when the researcher is interested in describing 
the relationship between two continuous variables. So, for example, if 
we are interested in the relationship between participants’ amount of 
exposure to pornography and their degree of belief that women share 
culpability for rape, we would use the correlation coefficient to estimate 
this association.

The r-index is familiar to most social scientists but the formula 
for it requires both the variances and covariances of the two contin-
uous variables, so it rarely can be computed from information typi-
cally presented in primary research reports. Luckily, primary 
researchers do report their r-indexes in most instances where they 
are applicable. However, if only the value of the t-test associated 
with the r-index is given, the r-index can be calculated using the 
following formula:

 r
t

t df
�

�

2

2
error

 (6)

where

all terms are defined as above.

The variance of the r-index can be calculated using the following 
formula: 

 
v

r

n
r =

(1 )

1

2 2�
�

 (7)

where

all terms are defined as above. 

The formula can be used to calculate the 95% confidence interval 
as r � 1.95 √

–
vr ≤ r ≥ r � 1.95 √

–
vr. 

Normalizing the distribution of r-indexes. When r-indexes are 
large—that is, when they estimate population values very different 
from zero—they will exhibit non-normal sampling distributions. This 
occurs because r-indexes are limited to values between �1.00 and �1.00. 
Therefore, as a population value approaches either of these limits, the 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

Copyright ©2017 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.
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range of possible values for a sample estimate will be restricted on the 
tail toward the approached limit (see Shadish & Haddock, 2009).

To adjust for this, most meta-analysts convert r-indexes to their 
associated z-scores before the effect size estimates are combined or 
tested for moderators. The z-scores have no limiting value and are 
normally distributed. Conceptually, the transformation “stretches” 
the restricted tail of the distribution and restores the bell shape of the 
curve. Once an average z-score has been calculated, it can be con-
verted back to an r-index. An examination of r-to-z transformations 
reveals that the two values are nearly identical until the absolute 
value of r equals about .25. However, when the r-index equals .50, the 
associated z-score equals .55, and when the r-index equals .8, the 
associated z-score equals 1.1. The z-score can also be calculated 
directly from

 z � .5 [ln(1�r) � ln(1�r)] (8)

where

ln � natural logarithm and 

all other terms are defined as above. 

The variance of the z-score is

 vz � �
1

( )n 3
 (9)

where

all terms are defined as above. 

For greatest ease, you can find r-to-z transform calculators on the 
Internet (e.g., http://vassarstats.net/tabs_rz.html) that will also calculate 
measures of dispersion. Be sure to remember that once you have calculated 
the average z-score of the transformed correlations, you must transform 
this back into a correlation coefficient when you present your results. 
The z-score will have little meaning for your audience.
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Effect Sizes Based on Two Dichotomous  

Variables: The Odds and Risk Ratios

A third class of effect size metric is applicable when both variables are 
dichotomous—for example, when elderly adults either receive or do 
not receive an aerobic activity treatment and the outcome variable is 
whether or not they are diagnosed with Alzheimer’s disease five years 
later. In this case, one measure of effect, called an odds ratio, is often 
used in medical research, where researchers are frequently interested 
in the effect of a treatment on mortality or the appearance or disap-
pearance of disease. It is used also in criminal justice research where 
the outcome variable might be recidivism (re-arrest after the passage 
of a certain amount of time) or in education studies—for example, 
when high school graduation (yes or no) is the outcome of interest.

As its name implies, the odds ratio describes the relationship 
between two sets of odds. For example, suppose meta-analysts come 
across a study of the effects of an intervention promoting aerobic exer-
cise among elderly adults. Two hundred randomly assigned partici-
pants either received or did not receive the intervention; 5 years later 
they were assessed for the presence of Alzheimer’s disease. The results 
of the study were as follows:

Intervention No Intervention

No Alzheimer’s Disease 
Indicated

75 60

Alzheimer’s Indicated 25 40

In order to calculate an odds ratio, the meta-analysts first deter-
mine that the odds against a participant in the intervention condition 
having Alzheimer’s disease were 3 to 1 (75 to 25). The odds against hav-
ing Alzheimer’s disease in the no-intervention condition were 1.5 to 1 
(60 to 40). In this case, the odds ratio is 2, meaning the odds of finding 
evidence of the disease in the no-intervention group were twice those in 
the intervention group. When the odds are the same in both conditions 
(i.e., when the treatment had no effect or the null hypothesis was true), 
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the odds ratio will be 1. The odds ratio can be calculated directly from 
the table by dividing the product of the main diagonal elements by the 
product of the off-diagonal elements, in our example (75 � 40)/(60 � 25).

Another measure of effect for two dichotomous variables is the 
risk ratio. This expresses the relative risk of one condition against 
the other. So, in the example about the risk of getting Alzheimer’s 
disease among the elderly adults who received the intervention was 
.25, or 25 chances in 100. For no intervention, the risk was .40, or 40 
in 100. The risk ratio is then the ratio of these two numbers: .625 if 
the treated condition is in the numerator or 1.60 if the untreated 
condition is in the numerator. 

Again, the Practical Meta-Analysis Effect Size Calculator (Wilson, 
2015) can calculate both odds ratios and risk ratios for you. Similar 
to the r-index, before you calculate an average ratio, the individual 
ratios should be transformed to their log (also provided by the  
calculator). Then, the average should be transformed back for  
purposes of interpretation. 

Because the odds ratio is used less often in the social sciences, 
it will not be treated extensively in the next section. However, most 
of the techniques discussed in the next section are easily adapted to 
its use. There are many other metrics that can be used when two 
dichotomous variables are being related to one another; Fleiss and 
Berlin (2009) provide an overview of numerous effect size estimates 
gauging the relationship between two dichotomous variables.

As general rules, I have two suggestions when you use effect size 
calculators available on the Internet. First, check the formulas used in 
these programs. They might differ in some ways from my simple formu-
las given above. As long as the website comes from a reliable source, the 
calculations should be reliable but it is always good to calculate a few 
effect sizes by hand. This way you can be more confident you under-
stand how your data are being analyzed by the software program. 

Practical Issues in Estimating Effect Sizes

The formulas for calculating effect sizes are straightforward. In prac-
tice, however, meta-analysts face many technical issues when they 
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attempt to calculate a magnitude of effect. The most important of 
these is missing data, which I discussed in Chapter 4 and will return 
to again in the next chapter. Other issues arise because different 
studies use somewhat different designs and because of some unique 
characteristics of the effect size metrics themselves. I will describe a 
few of these.

Choosing a metric when studies have different designs. Some primary 
researchers use parametric statistics (those that assume normal distri-
butions) and others use nonparametric statistics (ones that make no 
assumptions about distributions) to test and express the same rela-
tionship. For instance, this would be the case if one researcher mea-
sured intrinsic motivation in a choice study by calculating the average 
time each participant spent on the chosen task during a free-play 
period (a continuous variable dictating the use of parametric tests), 
and another simply recorded whether each participant did or did not 
choose a particular task during a free-play period (a dichotomous vari-
able dictating use of nonparametric tests). Most often, in a research 
literature statistical techniques based on one set of assumptions  
will predominate greatly over the other. Then, the statistics from the 
lesser-used approach can be converted to their dominant-approach 
equivalents and aggregated as though they shared the dominant 
approach’s assumptions. As long as the number of these conversions is 
small, there will be no great distortion of results. If there are substan-
tive reasons to distinguish between the outcome variables or if the split 
between parametric and nonparametric tests is relatively even, the two 
sets of studies might be meta-analyzed separately.

Related to the issue of studies that use different statistical proce-
dures is that different primary researchers sometimes convert contin-
uous variables to dichotomous ones. For instance, some primary 
researchers studying the relation between individual differences and 
attitudes toward rape might dichotomize personality scores into high 
and low scoring groups. Then, they might use a t-test to determine if 
the high and low group means were different on a continuous measure 
of attitudes toward rape. This suggests that a d-index would be most 
appropriate to estimate the relation. However, other researchers might 
leave the same personality scale in its continuous form and report  
the correlation between them. Conveniently, the different effect size 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

Copyright ©2017 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



222 RESEARCH SYNTHESIS AND META-ANALYSIS

metrics are easily converted from one to the other. The r-index can be 
transformed into a d-index using the following formula:

 d �
2

1 2

r

r�
 (10)

or the d-index into the r-index using

 r
d

d a
�

2 �
 (11)

where

a � a correction factor to adjust for different sample sizes between 
the two groups. 

This correction factor, a, can be calculated using this formula:

 a
n n

n
�

�( )1 2
2

1n 2

 (12)

where

all variables are defined as above. 

When a chi-square statistic associated with a 2 × 2 contingency 
table is given, the r-index can be estimated as follows:

 r �
	 2

n
 (13)

where

	2 � the chi-square value associated with the comparison, and

n � the total number of observations in the comparison.

If you search the Internet using “effect size converter,” you will find 
several websites that will allow you to easily convert between different 
effect size metrics.

Even though metrics can be converted easily, meta-analysts still 
must pick a single metric in which to describe their results. The choice 
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of how to express the effect size should be determined by which metric 
best fits with the measurement and design characteristics of the vari-
ables under consideration. So, the effect size metric used should be 

based on the characteristics of the conceptual variables. Therefore, an 
important question to ask when evaluating a research synthesis is,

If a meta-analysis was performed, was an appropriate 
effect size metric used?

When we related individual differences to rape attitudes, the r-index 
was appropriate most often (e.g., when personality dimensions were of 
interest) because the two variables were conceptually continuous in 
nature. If a study created two artificial groups by dichotomizing the 
continuous individual difference measure into high and low scorers, we 
would calculate a d-index comparing the group means, then convert it 
to an r-index using Formula (11).

Estimating effect sizes when studies compare more than two groups. 
Suppose we find a study of interventions to promote aerobic exercise 
that compared three groups—say, an exercise group, an information 
group, and a no-intervention group. In this instance, we likely would 
calculate two d-indexes, one comparing exercise to no-intervention 
and another comparing the exercise intervention to the information 
intervention (we could also consider comparing the information inter-
vention to no intervention, if this were the focus of our meta-analysis).3 
These two d-indexes are not statistically independent since both rely 
on the means and standard deviations of the same intervention group. 
However, this complicating factor is preferable to the alternative strat-
egy of using an effect size metric associated with a multiple-group 
inference test. Here is why.

One effect size metric that can be used when more than two groups 
are being compared simultaneously involves calculating the percentage 
of variance in the dependent variable explained by group membership. 
This effect size has the initially appealing characteristic that it can be 
used regardless of the number of groups in the study (indeed, it can be 
used with two continuous measures as well). So, it is very generally 
applicable. However, it has the unappealing characteristic that the 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

Copyright ©2017 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



224 RESEARCH SYNTHESIS AND META-ANALYSIS

resulting effect size tells us nothing about which of the multiple condi-
tions has the highest mean, or, more specifically, how the values of the 
means are ordered and how much each differs from the others. So, 
identical percentages of variance explained can result from different 
rank ordering of, and distances between, the group means. It is then 
impossible for the meta-analysts to draw conclusions about how the 
different groups stack up relative to one another. In fact, the results 
might cancel one another out if we looked at single-degree-of-freedom 
comparisons, suggesting no differences between groups. The percent-
age of variance explained would not catch this. This is why it is rarely, if 
ever, used by meta-analysts.

Estimating effect sizes from analyses including multiple predictor 

variables. Another way that research design influences effect sizes 
involves the number of factors employed in the primary data analysis 
procedures. For example, a primary researcher testing the effect of 
homework versus no-homework on achievement might also include 
individual difference variables—such as the sex or previous achieve-
ment of the students, or even their pretest scores on the outcome 
measure—in a multi-factored analysis of variance. The primary 
researcher also might not report the simple means and standard devi-
ations for the homework and no-homework groups. Meta-analysts 
then are faced with two choices.

First, they can calculate an effect size estimate based on the F-test 
reported by the researchers. However, this test uses an error term that 
has been reduced by the inclusion of the individual difference factors. 
This is equivalent to reducing the size of the estimate of Swithin in the 
d-index formula. This approach creates the problem that different 
effect sizes going into the same quantitative synthesis are likely to be 
known to differ in a systematic way—that is, in how the within-group 
standard deviation has been calculated. Likely, if the additional factors 
in the analysis are associated with variance in the outcome measure 
(e.g., the scores on a unit test), then this study will produce a larger 
effect size for homework than a study that did not include these addi-
tional factors in the analysis, all else being equal.

A second approach is to attempt to retrieve the standard deviations 
that would have occurred had all the extraneous factors been ignored 
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(i.e., not been removed from the error term used to calculate the F-test). 
Whenever possible, this strategy should be used—that is, an attempt 
should be made to calculate the effect size as though the comparison of 
interest was the sole comparison in the analysis. The best way to do this 
is to contact the authors of the primary research and see if they will 
share the data you need. Perhaps a more realistic approach is to adjust 
the effect size by estimating the relationships between the additional 
variables and the outcome measure. Borenstein et al. (2009) present 
some ways to calculate these estimates. The problem here, of course, is 
that the resulting estimate of the effect size is only as good as the esti-
mates of the relationships used to make adjustments.

Practically speaking, then, it is often difficult for meta-analysts to 
retrieve the unadjusted standard deviation estimates for the two 
groups if they are not given in the primary research report, nor is  
a simple t-test or one-degree-of-freedom F-test. In such cases,  
when you look for influences on study outcomes, you should either 
(a) leave these estimates out, if they are few, or (b) examine whether 
or not the number of factors included in the analysis is associated 
with the size of the effect. If a relation is found, you should report 
separately the results obtained from analyses of studies that used 
only the single factor of interest. So, for example, in the meta-analysis 
of homework research, we found one experimental study that 
reported the effect of homework only in an analysis of covariance 
with several covariates. This study’s results could not be combined 
with studies that did not adjust for covariates. We also found other 
studies that presented results regarding the relation between time 
spent on homework and achievement only in multiple regression 
analyses. These could not be combined with the studies that  
presented simple bivariate correlations.

Adjusting for the impact of methodological artifacts. The magni-
tude of an effect size will also be influenced by the presence of 
methodological artifacts in the primary data collection procedures. 
Schmidt and Hunter (2015) describe 10 such artifacts that can 
make an effect size smaller than it might otherwise be. These 
include, for example, errors (lack of reliability) in the measurement 
of the independent and dependent variable, imperfect construct 
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validity of measures, dichotomizing of continuous variables, and 
restrictions in the range of sampled values.

In the case of less-reliable measures, measures with more error are 
less sensitive for detecting relationships involving its conceptual vari-
ables. For example, assume two personality dimensions have equal true 
relationships with attitudes toward rape. However, if one personality 
variable is measured with more error than the other, this less-reliable 
measure will produce a smaller correlation, all else being equal. So you 
might estimate the impact of the reliability of measures on effect sizes 
by obtaining the reliabilities (e.g., internal consistencies) of the various 
measures. Or, if the reliabilities of some measures were not available 
you could estimate the distribution (mean and standard deviation) of 
the reliabilities. Using procedures described by Schmidt and Hunter 
(2015), you could then estimate what the average effect sizes would be 
if all measures were perfectly reliable. You could also calculate a credi-
bility interval, the estimated standard deviation of the disattenuated 
effect sizes.

Whether effect sizes should be corrected for artifacts depends first 
and foremost on the goal of the primary research and research synthe-
sis. In particular, are you interested in the relationship between the 
constructs that underlie the measures or in what can be expected in 
the real world? For example, the amount of homework students do and 
their subsequent achievement may be imperfectly measured but if the 
synthesis is meant to describe what effect of homework parents, teach-
ers, and student might expect on test scores, correcting for artifacts is 
inappropriate.4 On the other hand, the meta-analysis of studies of the 
effect of choice on motivation might legitimately correct for unreliabil-
ity in the motivation measures because they are interested in testing a 
theoretical notion. Error in the measurements might lead to accepting 
a null hypothesis when, in fact, it should be rejected. 

In addition, you should keep in mind that when you correct for arti-
facts, your results are only as good as your estimates of the impact of the 
artifact. If the measures of artifacts are unreliable or you must estimate the 
distribution of artifact effects based on limited data, it might be good to 
perform a sensitivity analysis—that is, to conduct your analyses with high 
and low estimates of the artifact correction to see how your results differ.
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Coding Effect Sizes

The statistics you need to calculate effect sizes and all the other  
statistics described next should be collected as part of your more 
general coding procedures. For example, Table 6.2 provides a simple 
example of the information on the statistical results of studies that 
might be collected by study coders. Here, the example involves exper-
imental studies of the effects of homework on achievement. Most 
meta-analyses in which two conditions are being compared (having 
a choice among tasks, participation versus no participation in an 

Effect Size Estimate 

 E1. What was the direction of the effect of 
homework on the achievement measure?

� � positive

� � negative 

___

 E2. Information about each experimental group (Note: Leave blank if 
not reported. M � Mean. SD � standard deviation.) 

Homework Group 

 a. Pretest M on outcome (if any) ___ ___ ___ . ___ ___ 

 b. Pretest SD ___ ___ ___ . ___ ___ 

 c. Posttest M on outcome ___ ___ ___ . ___ ___ 

 d. Posttest SD ___ ___ ___ . ___ ___ 

 e. Sample size ___ ___ ___ 

No-Homework Group 

 f. Pretest M on outcome (if any) ___ ___ ___ . ___ ___ 

Table 6.2  An Example Coding Sheet for the Statistical Outcomes of 
Experimental Studies on the Effects of Homework on 
Achievement

(Continued)
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Effect Size Estimate 

 g. Pretest SD ___ ___ ___ . ___ ___ 

 h. Posttest M on outcome ___ ___ ___ . ___ ___ 

 i. Posttest SD ___ ___ ___ . ___ ___ 

 j. Sample size ___ ___ ___ 

 k.  Total sample size (if not given for each 
group separately) 

___ ___ ___ ___

 E3. Information about null hypothesis significance tests 

 a. Value of independent t-statistic (or square 
root of F-test in one-factor ANOVA)

___ ___ . ___ ___ 

 b. Degrees of freedom for test (in the 
denominator)

___ ___ ___

 c. p-value from test < .___ ___ ___ 

 d. Dependent t-statistic ___ ___ . ___ ___ 

 e. Degrees of freedom for test (in the 
denominator)

___ ___ ___

 f. p-value from test < .___ ___ ___ 

 g. F-statistic (when included in a 
multifactored ANOVA) 

___ ___ . ___ ___

 h. Degrees of freedom for denominator of 
F-test 

___ ___ ___

 i. p-value from F-test < .___ ___ ___ 

 j. # of variables in multifactored ANOVA ___

 E4. Effect Size estimate

 a. What is the metric of the effect size (d, r, 
OR, RR, other)

___

 b. Was an effect size calculator used to 
calculate this effect? 

  0 = No

  1 = Yes

___

If yes, what calculator was used? __________________

Table 6.2 (Continued)
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exercise intervention) would look very similar. Coding sheets for 
correlational studies or studies relating two dichotomous variables 
would also be similar, but these might be even a bit simpler than my 
example in Table 6.2. Some of the information on the coding sheet 
may never be used and much of this information will be left blank. 
For example, when studies give the means and standard deviations, 
you may never use the information on the t-test. However, when 
means and/or standard deviations are missing, you will need the 
information on the null hypothesis significance test to calculate the 
d-index. Or if you want to examine whether the standard deviations 
in the experimental and control group are roughly equal, you will 
need this regardless of how you calculate the d-index. So, you might 
not know exactly what information is important to you until after 
you have begun your analysis.

COMBINING EFFECT SIZES ACROSS STUDIES

Once each effect size has been calculated, the meta-analysts next aver-
age the effects that estimate the same comparison or relationship. It is 
generally accepted that these averages should weight the individual 
effect sizes based on the number of participants in their respective 
samples. This is because larger samples give more precise population 
estimates. For example, a d-index or r-index based on 500 participants 
will give a more precise estimate of its underlying population effect size 
than will an estimate based on 50 participants. The average effect size 
should reflect this fact. So, while unweighted average effect sizes are 
sometimes presented in meta-analyses, they are typically accompanied 
by weighted averages.

One way to take the precision of the effect size estimate into 
account when calculating an average effect size is to multiply each 
estimate by its sample size and then divide the sum of these prod-
ucts by the sum of the sample sizes. However, there is a more precise 
procedure, first described in detail by Hedges and Olkin (1985), 
which has many advantages but also involves more complicated 
calculations.
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The d-Index

For the d-index, this procedure first requires the meta-analyst to calcu-
late a weighting factor, wi, which is the inverse of the variance associ-
ated with each d-index estimate. It can be calculated taking the inverse 
of the result of Formula (4), or more directly by using the following 
formula:

 W
n n n n

n n n n d
i

i i i i

i i i i i

�
�

� �
2

2
1 2 1 2

1 2
2

1 2
2

( )

( )
 (14)

where

nil and ni2 � the number of data points in Group 1 and Group 2 of 
Study i; and

di � the d-index of the comparison under consideration.

While the formula for wi looks imposing, it is really a simple arith-
metic manipulation of three numbers available whenever a d-index is 
calculated. It also is easy to program a statistical software package to 
perform the necessary calculation. Programs designed to perform 
meta-analysis (e.g., Comprehensive Meta-Analysis, 2015) will do it for 
you automatically.

Table 6.3 presents the group sample sizes, d-indexes, and weight-
ing factors (the wis) associated with the results of seven hypothetical 
comparisons. Let us assume the seven comparisons come from exper-
iments that compared the effects of homework versus no homework 
on a measure of academic achievement. All seven of the experiments 
produced results favoring homework assignments. The results could 
just as easily have come from seven comparisons of groups doing aer-
obic exercise or not, and the measure could be cognitive functioning. 
Or, the participants in one group in Table 6.3 could have been given a 
choice between two tasks while the other group was given no choice 
and the outcome could be subsequent interest in the task. It is good to 
look at the hypothetical data with multiple concrete examples in your 
head. That way you can see the conceptual similarity between the 
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examples. The key here is that you recognize that the research design 
in this table compares two group means on a continuous variable. If for 
some reason the outcome variable was a dichotomy (Did the student 
pass the course? Did the elderly get Alzheimer’s disease? Did the sub-
ject choose the task during free time?) but the majority of outcomes 
were continuous, the odds or risk ratio could have been converted to a 
d-index and the study included along with the others.

To further demystify the weighting factor, note in Table 6.3 that its 
values equal approximately half the average sample size in a group (it 
becomes less similar to half the average sample size as the sample sizes 
in the two groups become more different). It should not be surprising, 
then, that the next step in obtaining a weighted average effect size 
involves multiplying each d-index by its associated wi and dividing the 

Study ni1 ni2 di wi di
²wi diwi 

Qb 
Grouping 

1 259 265 .02 130.98 .052 2.619 A 

2 57 62 .07 29.68 .145 2.078 A 

3 43 50 .24 22.95 1.322 5.509 A 

4 230 228 .11 114.32 1.383 12.576 A 

5 296 291 .09 146.59 1.187 13.193 B 

6 129 131 .32 64.17 6.571 20.536 B 

7 69 74 .17 35.58 1.028 6.048 B 

5 1083 1101 1.02 544.27 11.69 62.56 

Table 6.3  An Example of d-Index Estimation and Tests of Homogeneity

NOTE: Weighted average d. � 62.56/544.27 � �.115;

CI

Q

d.95%

t

2

.115 1.96
1

544.27
.115 084;

11.69
62.56

544.27
4

�

� � �


 � 
 .

..5;

Qw ��1.69 � 2.36 � 4.05;

Qb ����
������
������
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sum of these products by the sum of the weights. This is done using the 
following formula:

 d. � 
�

�
i

k

i i

i

k

i

d w

w

�

�

1

1

 (15)

where

k � the total number of comparisons and 

all other terms are defined as above.

Table 6.3 shows the average weighted d-index for the seven com-
parisons is d. � .115.

One advantage of using the wis as weights, rather than sample 
sizes, is that the wis can also be used to generate a confidence interval 
around the average effect size estimate. To do this, an estimated vari-
ance for the average effect size must be calculated. First, the inverse of 
the sum of the wis is found. Then, the square root of this variance is 
multiplied by the z-score associated with the confidence interval of 
interest. Thus, the formula for a 95% confidence interval is

 CId.95% � 


�

d z
w

i

i

k

i

.
1

1
�

 (16)

where

zi � the z-score associated with the confidence interval of interest 
and

all terms are defined as above. 

Table 6.3 reveals that the 95% confidence interval for the seven home-
work comparisons encompasses values of the d-index .084 above and 
below the average d-index. Thus, we expect 95% of estimates of this effect 
to fall between d � .031 and d � .199. Note that this interval does not con-
tain the value d � 0. It is this information that can be taken as a test of the 
null hypothesis that no relation exists in the population, in place of 
directly combining the significance levels of null hypothesis tests. In this 
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example, we would reject the null hypothesis that there was no difference 
in achievement between students who did and did not do homework.

The r-Index

The procedure for finding the average weighted r-index and its associ-
ated confidence interval is similar. Here, I will illustrate how to do this 
when each r-index is first transformed to its corresponding z-score, zi. 
In this case, the following formula is applied:

 z
n

n

i

k

i i

i

k

i

.
( )

( )
� �

�

�

�
1

1

3

3

�

�

z
 (17)

where

ni � the total sample size for the ith comparison and

all other terms are defined as above.

Notice that formulas for calculating average effect sizes all follow the 
same form: multiply the effect size by a weight, sum the products, and 
divide by the sum of the weights. So, to combine the r-indexes directly, 
multiply each by its weighting factor—in this case, like the d-index, it is 
the inverse of its variance (Formula [7])—and divide the sum of this 
product by the sum of the weights, just as was done for the d-index.

To obtain a confidence interval for the average z-score, the formula is

 CI 95%

i

z

i

k
z

n
. .

.

( )

� 


�

1 96

3
1
� �

 (18)

where

all terms are defined as above. 

To obtain a confidence interval for the r-indexes combined 
directly, simply substitute the sum of the weights in the denominator 
of Formula (18).
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Remember that it is important to transform your r-indexes to 

z-scores before you begin to combine them, especially if many of 
the correlations are above .25. Once the confidence interval has 
been established, meta-analysts convert the z-scores back to the 
correlations.

Table 6.4 presents an example of how average r-indexes are calcu-
lated. For example, the six correlations might come from studies relat-
ing participants’ individual differences on authoritarianism and their 
score on a measure of rape myth acceptance. Or, the correlations might 
be between time spent on homework and a unit test score. Again, the 
key here is that both measures are continuous. The average zi was 207 
with the 95% confidence interval ranging from .195 to .219. Note that 
this confidence interval is quite narrow. This is because the effect size 
estimates are based on large samples. Note also that the r-to-z transfor-
mations result in only minor changes in two of the r-index values. This 

Study ni ri zi ni � 3 (ni � 3)zi 
(ni � 3)

zi
² 

Qb 
Grouping 

1 3,505 .06 .06 3,502 210.12 12.61 A 

2 3,606 .12 .12 3,603 432.36 51.88 A 

3 4,157 .22 .22 4,154 913.88 201.05 A 

4 1,021 .08 .08 1,018 81.44 6.52 B 

5 1,955 .27 .28 1,952 546.56 153.04 B 

6 12,146 .26 .27 12,143 3278.61 885.22 B 

5 26,390 1.01 1.03 26,372 5462.97 1310.32 

Table 6.4  An Example of r-Index (Transformed to z) Estimation and 
Tests of Homogeneity

NOTE: Weighted average z. �  � .207;

CI

Q

z.95%

t

2

.207 1.96 26,372 .207 012;

1310.32
(5462.97)

26,

�

� �


 � 
 .

3372
178.66;�

Qw ��34.95 � 50.40 � 85.35;

Qb ��178.66 � 85.35 � 93.31.
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would not be the case had the r-indexes been larger. As with the earlier 
example, zi � 0 is not contained in the confidence interval. Therefore, 
we can reject the null hypothesis that there is no relation between par-
ticipants’ individual differences on authoritarianism and their scores 
on a measure of rape myth acceptance (or, on time spent on homework 
and a unit test score).

In sum, each of the effect size metrics can be averaged across stud-
ies and confidence intervals can be placed around these mean esti-
mates. Therefore, when evaluating a research synthesis, it is important 
to ask,

If a meta-analysis was performed, (a) were average effect 
sizes and confidence intervals reported and (b) was an 
appropriate model used to estimate the independent 
effects and the error in effect sizes?

A Note on Combining Slopes From Multiple Regressions

Up to this point, the procedures for combining and comparing study 
results have assumed that the measure of effect is a difference between 
means, a correlation, or an odds ratio. However, regression analysis is a 
commonly used technique in the social sciences, particularly in nonex-
perimental studies where many variables are used to predict a single 
criterion. Similar to the standardized mean difference or correlation 
coefficient, the regression coefficient, b, or the standardized regression 
coefficient, �, are also measures of effect size. � will typically be of most 
interest to meta-analysts because, like the d-index and r-index, it stan-
dardizes effect size estimates when different measures of the same 
conceptual variable are used in different studies. � represents the 
change in a standardized predictor variable, controlling for all other 
predictors, given one standard unit change in the criterion variable.

Meta-analyses using regression coefficients as effect sizes are diffi-
cult to conduct for a variety of reasons. First, with regard to using the 
unstandardized b-weight, this is like using raw score differences as 
measures of effect—the scales of the predictor and outcome of interest 
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typically vary across studies. Directly combining them can lead to unin-
terpretable results. This problem can be overcome by using �, the fully 
standardized estimate of the slope for a particular predictor.5 But still, 
the other variables included in models using multiple regression gener-
ally differ from study to study (note the related earlier discussion about 
multifactored analyses of variance). Each study may include different 
predictors in the regression model and, therefore, the slope for the pre-
dictor of interest will represent a different partial relationship in each 
study (Becker & Wu, 2007). For example, in our meta-analysis of home-
work and achievement, we found numerous studies that performed 
analyses of the relationship between time spent on homework and 
achievement that reported �. However, each was based on a regression 
model that included different additional variables. This made it ques-
tionable that the �s should be directly combined. So, rather than aver-
age them, we described these studies’ individual �s and the range of 
�-values across the studies. These were overwhelmingly positive, were 
generally based on very large samples, and used a variety of achieve-
ment outcome measures. As such, they strengthened our claim about 
the positive effects of homework on achievement that was based on 
the few small studies that purposively manipulated homework and 
tested its effect on a single limited outcome measure, unit test scores.

Regression slopes can be directly combined when (a) the outcome 
and predictor of interest are measured in a similar fashion across stud-
ies, (b) the other predictors in the model are the same across studies, 
and (c) the predictor and outcome scores are similarly distributed 
(Becker, 2005). It is rare that all three of these assumptions are met; 
typically, measures differ across studies and regression models are 
diverse in terms of which additional variables are included in them.

The Synthesis Examples

Both the standardized mean difference and the correlation coefficient 
measures of effect size were used in the synthesis examples. In the syn-
thesis of the effects of homework, the d-index was used to express the 
findings from comparisons that purposively manipulated homework 
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and then measured the difference in terms of unit test scores. The 
weighted average d-index across five studies was d. � .60, with a 95% 
confidence interval encompassing values from d � .38 to d � .82. Clearly, 
then, the null hypothesis could be rejected. The homework research 
synthesis also used correlation coefficients to estimate the relationship 
between student or parent reports of the amount of time spent on 
homework and a variety of measures of achievement. Of 69 such correla-
tions, 50 were positive and 19 were negative. The weighted average 
correlation was r � .24 with a very narrow 95% confidence interval, 
encompassing the values between .24 and .25. The confidence interval 
was so small because of the large number of participants in these stud-
ies; the adjusted mean sample size in the studies was 7,742.

The meta-analysis of individual differences and attitudes toward 
rape also used correlation coefficients as the measure of the strength of 
relationships. Among the many correlations involving individual differ-
ences, we found, for example, that across 15 correlations older partici-
pants were more accepting of rape than younger ones, average r. � .12 
(95% CI � .10�.14).

The meta-analyses on (a) interventions to increase aerobic exer-
cise among adults and (b) the effects of choice on intrinsic motivation 
used the standardized mean difference to measure effects. The 
weighted average g-index across 29 studies indicated that adults who 
participated in the interventions revealed improvements in attention 
and processing speed, g. � .158 (95% CI � .055�.260), executive func-
tioning, g. � .123 (95% CI � .021�.225), and memory, g. � .128 (95% 
CI � .015�.241). The average weighted effect size for the 47 estimates of 
the impact of choice on measures of intrinsic motivation was d. � .30 
(95% CI � .25�.35), indicating choice led to greater intrinsic motivation.

ANALYZING VARIANCE IN  

EFFECT SIZES ACROSS FINDINGS

The analytic procedures described thus far have illustrated how to 
estimate effect sizes, average them, and use the confidence interval 
surrounding the average to test the null hypothesis that the difference 
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between two means or the size of a correlation is 0. Another set of sta-
tistical techniques helps meta-analysts discover why effect sizes vary 
from one comparison to another. In these analyses, the effect sizes 
found in the separate comparisons are the dependent or predicted vari-
ables and the characteristics of the comparisons are the predictor 
variables. The meta-analysts ask whether the magnitude of relation 
between two variables in a comparison is affected by the way the study 
was designed or carried out.

One obvious feature of the effect sizes in Tables 6.3 and 6.4 is that they 
vary from comparison to comparison. An explanation for this variability 
is not only important, but also represents the most unique contribution of 
research synthesis. By performing an analysis of differences in effect sizes, 
the meta-analyst can gain insight into the factors that affect the strengths 
of relationships even though these factors may have never been studied in 
a single experiment. For instance, assume that the comparisons were 
looking at the effects of homework and the first four studies listed in  
Table 6.3 were conducted in elementary schools while the last three studies 
were conducted in high schools. Is the effect of homework different for 
students at different grades? This question could be addressed through 
the use of the analytic techniques described next, even though no single 
study included both elementary and high school students and tested to 
see if the grade level of students moderated the effect of homework.

The techniques that follow are a few examples of many procedures 
for analyzing variance in effect sizes. I do not cover some of the more 
complex synthesis techniques but will return to them after exposition 
of the most frequently used meta-analysis techniques. 

Traditional Inferential Statistics

One way to analyze the variance in effect sizes is to apply the tradi-
tional inference procedures that are used by primary researchers. 
Meta-analysts interested in whether an exercise intervention’s effects 
on older adults’ cognitive functioning were stronger for males than for 
females might do a t-test on the difference between effect sizes found 
in comparisons exclusively using males versus comparisons exclusively 
using females. Or, if the meta-analysts were interested in whether the 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

Copyright ©2017 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



239Chapter 6  Step 5: Analyzing and Integrating the Outcomes of Studies

intervention effect size was influenced by the length of the interven-
tion and the measurement of cognitive functioning, the meta-analysts 
might correlate the length of treatment in each comparison with its 
effect size. In this instance, the predictor and dependent variables are 
continuous, so the significance test associated with the correlation 
coefficient would be the appropriate inferential statistic. For more 
complex questions, a synthesist might categorize effect sizes into mul-
tifactor groupings—for instance, according to the gender and age of 
participants—and perform an analysis of variance or multiple regres-
sion on effect sizes. For Table 6.3, if a one-way analysis of variance were 
conducted comparing the first four d-indexes with the last three d- 
indexes, the result would not be statistically significant.

Standard inference procedures were the techniques initially used by 
some meta-analysts for examining variance in effects. Glass et al. (1981) 
detailed how this approach is carried out. However, at least two problems 
arise with the use of traditional inference procedures in meta-analysis. 
The first is that traditional inference procedures do not test the hypoth-
esis that the variability in effect sizes is due solely to sampling error 
(recall the discussion earlier in this chapter). Therefore, the traditional 
inference procedures can reveal associations between design character-
istics and effect sizes without determining first whether the overall vari-
ance in effects is greater than that expected by sampling error alone.

Also, because effect sizes can be based on different numbers of 
data points (sample sizes), they can have different sampling variances 
associated with them—that is, they are measured with different 
amounts of error, or differing levels of precision. If this is the case (and 
it often is), then the effect sizes violate the assumption of homogeneity 
of variance that underlies traditional inference tests. For these two 
reasons, traditional inferential statistics are no longer used when per-
forming a meta-analysis.

Comparing Observed to  

Expected Variance: Fixed-Effect Models

In place of traditional procedures, several approaches have gained 
acceptance. One approach is called the fixed-effect model. I will 
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240 RESEARCH SYNTHESIS AND META-ANALYSIS

explain this simplest model first and then explain a second more 
complex model, called the random-effects model. The fixed-effect 
model compares the variation in the observed effect sizes with the 
variation expected if only error due to the sampling of participants 
were causing differences in effect size estimates. In other words, it 
makes the assumption that there is one value of the effect size 
underlying all the observations and the only thing making the obser-
vations different is differences in the participants sampled into each 
study. This approach involves calculating (a) the observed variance 
in the effect sizes from the known findings and (b) the expected 
variance in these effect sizes given that all are estimating the same 
underlying population value. Sampling theory allows us to calculate 
precise estimates of how much sampling variation to expect in a 
group of effect sizes if only differences between the participants is 
making the effect sizes different. This expected value is a function of 
the average effect size estimate, the number of estimates, and their 
sample sizes.

The meta-analysts then compare the observed with the expected 
variance. If the variance estimates are deemed not to differ then sam-
pling error of participants is the simplest explanation for the variance 
in effect sizes. If they are deemed different—that is, if the observed 
variance is (significantly) greater than that expected due to sampling 
error of participants, then the meta-analysts begin the search for sys-
tematic influences on effect sizes. This is done by grouping the effect 
sizes and asking whether the group averages are more different than 
sampling error alone would predict.

Homogeneity Analyses

A homogeneity analysis is a formal way to compare the observed vari-
ance to that expected from sampling error. It involves the calculation 
of how probable it is that the variance exhibited by the effect sizes 
would be observed if only sampling error was making them different. 
This is the approach used most often by meta-analysts, so I will provide 
a few more of its details.
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Homogeneity analysis first asks the question, “Is the observed 
variance in effect sizes statistically significantly different from that 
expected by sampling error alone?” If the answer is “no,” then some 
statisticians advise that the meta-analysts stop the analysis there. 
After all, chance or sampling error is the simplest and most parsi-
monious explanation for why the effect sizes differ. If the answer is 
yes—that is, if the effect sizes display significantly greater variabil-
ity than expected by chance, the meta-analysts then begin to exam-
ine whether study characteristics are systematically associated 
with variance in effect sizes. Some meta-analysts believe that the 
search for moderators should proceed regardless of whether sam-
pling error is rejected as a plausible sole cause of variability in effect 
sizes if there are good theoretical or practical reasons for choosing 
moderators. This is the approach I usually take. Regardless of the 
approach you prefer, when evaluating a research synthesis, it is 
important to ask,

If a meta-analysis was performed, was the homogeneity 
of effect sizes tested?

Suppose a meta-analysis reveals a homogeneity statistic that has 
an associated p-value of .05. This means that only 5 times in 100 would 
sampling error create this amount of variance in effect sizes. Thus, the 
meta-analysts would reject the null hypothesis that sampling error 
alone explains the variance in effect sizes and they would begin the 
search for additional influences. They would then test whether study 
characteristics explain variation in effect sizes. Studies would be 
grouped by common features, and the average effect sizes for groups 
would be tested for homogeneity in the same way as the overall average 
effect size.

An approach to homogeneity analysis will be described that was 
introduced simultaneously by Rosenthal and Rubin (1982) and Hedges 
(1982). The formula presented by Hedges and Olkin (1985; also see 
Hedges, 1994) will be given here and the procedures using d-indexes 
will be described first. 
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The d-index. In order to test whether a set of d-indexes is homoge-
neous, the meta-analysts must calculate a statistic Hedges and Olkin 
(1985) called Qt. The formula is as follows:

 Qt
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i i

i

k

i i

i

k
w d

w d

w
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 (19)

where all terms are defined as above.
The Q-statistic has a chi-square distribution with k � 1 degrees 

of freedom, or, one less than the number of comparisons. The 
meta-analysts refer the obtained value of the total Q statistic, Qt, to 
a table of (upper tail) chi-square values. If the obtained value is 
greater than the critical value for the upper tail of a chi-square at 
the chosen level of significance, the meta-analysts reject the 
hypothesis that the variance in effect sizes was produced by sam-
pling error alone. Table 6.5 presents the critical values of chi-square 
for selected probability levels.

Upper Tail Probabilities 

DF .500 .250 .100 .050 .025 .010 

 1 .455 1.32 2.71 3.84 5.02 6.63 

 2 1.39 2.77 4.61 5.99 7.38 9.21 

 3 2.37 4.11 6.25 7.81 9.35 11.3 

 4 3.36 5.39 7.78 9.49 11.1 13.3 

 5 4.35 6.63 9.24 11.1 12.8 15.1 

 6 5.35 7.84 10.6 12.6 14.4 16.8 

 7 6.35 9.04 12.0 14.1 16.0 18.5 

 8 7.34 10.2 13.4 15.5 17.5 20.1 

 9 8.34 11.4 14.7 16.9 19.0 21.7 

Table 6.5  Critical Values of Chi-Square for Given Probability Levels
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Upper Tail Probabilities 

DF .500 .250 .100 .050 .025 .010 

10 9.34 12.5 16.0 18.3 20.5 23.2 

11 10.3 13.7 17.3 19.7 21.9 24.7 

12 11.3 14.8 18.5 21.0 23.3 26.2 

13 12.3 16.0 19.8 22.4 24.7 27.7 

14 13.3 17.1 21.1 23.7 26.1 29.1 

15 14.3 18.2 22.3 25.0 27.5 30.6 

16 15.3 19.4 23.5 26.3 28.8 32.0 

17 16.3 20.5 24.8 27.6 30.2 33.4 

18 17.3 21.6 26.0 28.9 31.5 34.8 

19 18.3 22.7 27.2 30.1 32.9 36.2 

20 19.3 23.8 28.4 31.4 34.2 37.6 

21 20.3 24.9 29.6 32.7 35.5 33.9 

22 21.3 26.0 30.8 33.9 36.8 40.3 

23 22.3 27.1 32.0 35.2 38.1 41.6 

24 23.3 28.2 33.2 36.4 39.4 43.0 

25 24.3 29.3 34.4 37.7 40.6 44.3 

26 25.3 30.4 35.6 38.9 41.9 45.6 

27 26.3 31.5 36.7 40.1 43.2 47.0 

28 27.3 32.6 37.9 41.3 44.5 48.3 

29 28.3 33.7 39.1 42.6 45.7 49.6 

30 29.3 34.8 40.3 43.8 47.0 50.9 

40 49.3 45.6 51.8 55.8 59.3 63.7 

60 59.3 67.0 74.4 79.1 83.3 88.4 

.500 .750 .900 .950 .975 .990 

Lower Tail Probabilities
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For the set of comparisons given in Table 6.3, the value of Qt equals 
4.5. The critical value for chi-square at p �� .05 based on 6 degrees of 
freedom is 12.6. Therefore, the hypothesis that sampling error explains 
the differences in these d-indexes cannot be rejected.

The procedure to test whether a methodological or conceptual 
distinction between studies explains variance in effect sizes involves 
three steps. First, a Q-statistic is calculated separately for each  
subgroup of comparisons. For instance, to compare the first four  
d-indexes in Table 6.3 with the last three, a separate Q-statistic is 
calculated for each grouping. Then, the values of these Q-statistics 
are summed to form a value called Qw, or Q-within. This value is then 
subtracted from Qt to obtain the Q statistic for the difference 
between the two group means, Qb, or Q-between:

 Q Q Qb t w� –  (20)

where

all terms are defined as above. 

The statistic Qb is used to test whether the average effects from the 
two groupings are homogenous. It is compared to a table of chi-square 
values using as degrees of freedom one less than the number of group-
ings. If the average d-indexes are homogeneous, then the grouping fac-
tor does not explain variance in effects beyond that associated with 
sampling error. If Qb exceeds the critical value, then the grouping factor 
is a significant contributor to variance in effect sizes.

In Table 6.3 the Qb comparing the first four and last three d-indexes 
is .45. This result is not significant with one degree of freedom. So, if the 
first four effect sizes were taken from studies of the effect of homework 
on achievement using elementary school students and the last three 
using high school students, we could not reject the null hypothesis that 
effect sizes were equal in the two populations of students.

The r-index. The analogous procedure for performing a homogene-
ity analysis on r-indexes transformed to z-scores involves the following 
formula:
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where

all terms are defined as above. 

To compare groups of r-indexes, Formula (21) is applied to each 
grouping separately, and the sum of these results, Qw, is subtracted from 
Qt to obtain Qb.

The results of a homogeneity analysis using the z-transforms of the 
r-indexes are presented in Table 6.4. The Qt value of 178.66 is highly 
significant, based on a chi-square test with 5 degrees of freedom (the 
number of correlation minus one). While it seems that a range of r- 
indexes from .06 to .27 is not terribly large, Qt tells us that, given the 
sizes of the samples on which these estimates are based, the variation 
in effect sizes is too great to be explained by sampling error alone. 
Something other than sampling of participants likely is contributing to 
the variance in r-indexes.

Suppose we know that the first three correlations in Table 6.4 are 
from samples of high school students and the last three are from ele-
mentary school students. A homogeneity analysis testing the effect of 
grade level on the magnitude of r-indexes reveals a Qb of 93.31. This 
value is highly statistically significant, based on a chi-square test with 
one degree of freedom. For high school students the average weighted 
r-index is .253, whereas for elementary school students it is r � .136. 
Thus, the null hypothesis can be rejected and the grade level of the 
student is one potential explanation for the variation in r-indexes.

Comparing Observed and Expected Variance:  

Random-Effects Models

An important decision you will make when conducting a meta-analysis 
involves whether a fixed-effect or random-effects model should be 
used to calculate the variability in effect size estimates averaged 
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across studies. As I discussed above, fixed-effect models calculate 
only error that reflects variation in studies’ outcomes due to the sam-
pling of participants. However, other features of studies also can be 
viewed as influences on outcomes. For example, the studies in a syn-
thesis of homework may vary by the length of the assignment and/or 
subject matter. Exercise interventions may vary in their intensity or 
modality. Choices may vary in number or domain. These variations 
will cause variation in effect sizes not due to sampling of partici-
pants. However, they are not error in the sense of being chance 
because even though they may at first be unexplained they may also 
be systematic in ways we are not aware of. For example, more-intense 
exercise interventions may improve cognitive functioning more than 
less-intense interventions. 

For this reason, in many cases it may be most appropriate to treat 
studies as randomly sampled from a population of all studies. The vari-
ation that might be added to the estimate of error due to variations  
in study methods is ignored when a fixed-effect model is used. In a 
random-effects model (Raudenbush, 2009), study-level variance is 
assumed to be present as an additional source of random influence. 
The question you must answer, then, is whether you believe the effect 
sizes in your data set are noticeably affected by study-level influences.

Regrettably, there are no hard-and-fast rules for making this deter-
mination. Overton (1998) found that in the search for moderators, 
fixed-effect models may seriously underestimate error variance and 
random-effects models may seriously overestimate error variance when 
their assumptions are violated. Thus, neither can be chosen because it 
is statistically more justified. In practice, many meta-analysts opt for the 
fixed-effect assumption because it is analytically easier to manage. But 
some meta-analysts argue that fixed-effect models are used too often 
when random-effects models are more realistic, such as when interven-
tions like homework or exercise programs can be expected to have  
different empirical realizations from one study to another in ways that 
will influence their effectiveness. Others counter this argument by  
claiming that a fixed-effect model can be applied if a thorough, appropri-
ate search for moderators of effect sizes is part of the analytic strategy—
that is, if the meta-analysts examine the systematic effects of study-level 
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influences—and in this way make moot the issue of random effects at 
the study level. The fixed-effect model may also be favored if the number 
of effect sizes is small, making it difficult to achieve a good estimate of 
variation in the effect sizes at the study level.

What should your decision be based on? One approach is to decide 
based on the outcome of the test of homogeneity of effects using a 
fixed-effect model; if the hypothesis of homogeneous effects is rejected 
under the fixed-effect assumption, then you switch to a random-effects 
model. However, as Borenstein et al. (2009) argue, this strategy is dis-
couraged; it is based on statistical outcomes, not on the conceptual 
characteristics of your studies. Many researchers interested in evaluat-
ing applied interventions (such as homework) often choose the random- 
effects model because they believe that random sampling of studies is 
more descriptive of their real-world circumstances and also will lead to 
a more conservative conclusion about the range of impacts the inter-
vention might have (because the estimate of the variation around the 
average estimate is larger using the random-effects model). So, if you 
suspect a large influence of study-level sources of random error, then a 
random-effects model is most appropriate in order to take these 
sources of variance into account.

Other researchers studying basic social processes—processes that 
likely do not change greatly due to the contexts in which they are being 
studied (such as, perhaps, tests of reaction times)—tend to favor 
fixed-effect models. Hedges and Vevea (1998) stated that fixed-effect 
models are most appropriate when the goal of the research is “to make 
inferences only about the effect size parameters in the set of studies 
that are observed (or a set of studies identical to the observed studies 
except for uncertainty associated with the sampling of subjects)” (p. 3). 
In studies of basic processes, this type of inference might suffice, 
because you make the extra-statistical assumption that the relation-
ship you are studying is largely insensitive to its context. 

To summarize then, you might consider applying the following rules:

 � Do not use the outcome of a fixed-effect homogeneity analysis 
to decide whether a random-effects analysis is called for. The 
decision should be based on the nature of the research question.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

Copyright ©2017 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



248 RESEARCH SYNTHESIS AND META-ANALYSIS

 � In most instances where interventions are being evaluated or 
the research takes place in real-world contexts that vary from 
one another in important ways, random-effects models should 
be favored. However, if the number of studies being combined is 
small, consider using a fixed-effect model; the estimate of study-
level variance will be too rough.

 � In most instances where laboratory studies of basic processes 
are being combined, fixed-effect models should be appropriate. 
Here, the context of the study (study-level variations) should be 
less consequential to study findings.

Which model of effects you use and the set of assumptions your 
choice is based on needs to be incorporated into the interpretation and 
discussion of your findings. I will return to the issue of interpreting 
fixed-effect and random-effects models in Chapter 7.

Calculating random-effects estimates of the mean effect size, con-
fidence intervals, homogeneity statistics, and moderator analyses is 
computationally complex. Because of this complexity, the formulas I 
have provided in this chapter are for fixed-effect models. I will not go 
into the calculation of the variance estimate in random-effects models 
(see Borenstein et al., 2009, if you are interested) but conceptually it 
involves calculating the variation in effect sizes (using the effect size as 
the unit of analysis) and adding this to the variation due to sampling of 
participants (the fixed-effect). Thankfully, the statistical packages 
developed specifically for meta-analysis and the program macros asso-
ciated with more general statistical packages allow you to conduct 
analyses using both fixed-effect and random-effects assumptions.

I2: The Study-Level Measure of Effect

It may have occurred to you that meta-analysts point out the short-
comings of null hypothesis significance testing but then use it to test 
whether groups of studies have significantly different average effect 
sizes. This is only partially true. Certainly, a good meta-analysis pres-
ents the confidence interval around overall estimates of effect and for 
all subgroups when a moderator of effects is tested. A measure of effect 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

Copyright ©2017 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



249Chapter 6  Step 5: Analyzing and Integrating the Outcomes of Studies

also exists for quantifying the percentage of the variance in a set of 
studies that is due to the studies themselves and not sampling error. 
This statistic is called I2 and is calculated as follows:

 
I

Q df

Q

2 100� ��
–

%  (22)

where

all quantities are defined as above. 

I2 tells you what portion of the total variance in the effect sizes is 
due to variance between the studies. The Cochrane Collaboration 
(Deeks, Higgins, & Altman, 2008) gives a rough guide to when the per-
centage of study variance may be important. In addition to the signifi-
cance of the Q-statistic, it suggests that I2 below 40% might not be 
important while I2 above 75% suggests considerable heterogeneity.

Statistical Power in Meta-Analysis

The above discussion leads naturally into a consideration of the power 
of meta-analyses to detect effects. Meta-analyses have different statis-
tical power for answering its multiple questions. First, meta-analysts 
ask the question, “What is the average effect size and the precision of 
this estimate, or, alternatively, with what certainty can we reject the 
null hypothesis?” The answer to this question will depend on the 
model, fixed or random, used to estimate the expected variation in 
effects. When a fixed-effect model is used, we can say with certainty 
that the power of the meta-analysis to detect an effect and the preci-
sion of the estimate will be greater in the meta-analysis than in any one 
or any subset of the primary studies going into the research synthesis. 
This is because the meta-analytic estimate will always be based on a 
larger sample of participants. If the assumption of the fixed-effect 
model is true (i.e., sampling error alone is making sample estimates 
different) the meta-analysis estimate will always be more precise. 

However, this is not necessarily true when a random-effects  
model is employed. Here, the variability due to variations in study  
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characteristics must be added to sampling error at the participant 
level. This source of variance is not present in any one study. So, if 
study-level variance is large it is possible when we calculate the preci-
sion of the average effect size that the precision of the individual studies 
(or one or some of them) can be greater than the precision of the 
meta-analytic effect size estimate. You can think of it this way: if the 
estimate of study-level variation adds nothing to the participant-level 
variance, then a fixed-effect and random-effects model will provide the 
same estimates of variability (equal to participant sampling alone) and 
meta-analytic estimates of effect will always be more precise than any 
single-study estimate. As the study-level variability moves away from a 
zero contribution, the precision of the meta-analytic estimate decreases 
and at some point, depending on the amount of study-level variability 
and the number and sample size of the primary studies, may become 
less precise than any single study estimate.

Next, meta-analysts ask whether there is sufficient power to detect 
a significant Q-statistic, or to reject the null hypothesis that sampling 
of participants alone is making the effect sizes different. Similar to 
power analysis with primary data, the power to detect a difference 
between an observed Q-statistic and an expected one is a function of 
the number of effect sizes you have, the sample sizes contributing to 
those effects sizes, the size of the expected study-level variation in 
effects (the I2) as well as how well the effects conform to the necessary 
statistical assumptions (e.g., normal distribution).

Finally, meta-analysts might be interested in the power to detect 
differences between groups of studies: “Was the average effect in the 
group of Studies A different from the average effect in the group of 
Studies B?” This power analysis requires a variation on the analyses 
described in the last paragraph. 

Conducting power analysis in meta-analysis often has a different 
purpose from that in primary research. After all, meta-analysts do not 
do power analysis to help decide how many studies to run. Perhaps, if 
an existing literature contains a very large number of studies, the 
meta-analyst might conduct an a priori power analysis to determine 
how many studies to sample from it. Otherwise meta-analytic power 
analyses are most informative as guides to interpretation. The power of 
meta-analytic tests can be very low, especially for tests of moderators 
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of study effects when a random-effects model is used and the number of 
studies is small. By conducting such an analysis, the interpretation of 
the results can include the possibility that accepting the null hypothe-
sis might lead to a Type II error. 

Meta-Regression: Considering Multiple  

Moderators Simultaneously or Sequentially

Homogeneity statistics can become unreliable and difficult to interpret 
when the meta-analysts wish to test more than one moderator of effect 
sizes at a time. Hedges and Olkin (1985) present one technique for 
testing multiple moderators. The model uses simultaneous or sequen-
tial tests for homogeneity. It removes the variance in effect sizes due to 
one moderator and then removes from the remaining variance any 
additional variance due to the next moderator. So, for example, if we 
were interested in whether the sex of the student influenced the effect 
of homework on achievement after controlling for the student’s grade 
level, we would first test grade level as a moderator, then test the stu-
dent’s sex as a moderator within each grade-level category.

This procedure can be difficult to apply because characteristics of 
studies are often correlated with one another and the number of effect 
sizes in categories of interest rapidly becomes small. For example, sup-
pose we wanted to test whether the effect of homework on achieve-
ment is influenced by both the grade level of students and the type of 
achievement measure. We might find that these two study characteris-
tics are often confounded—more studies of high school students used 
standardized tests while more studies of elementary school students 
used class grades. Studies of homework with elementary school stu-
dents using standardized tests may be rare. The problem would get 
even worse if yet a third variable were added to the mix.

Another statistical approach to testing multiple moderators of 
effect sizes simultaneously or sequentially is called meta-regression. As 
the name implies, this approach is the meta-analysis analog to multiple 
regression. In meta-regression, the effect sizes are the criterion variables 
and the study characteristics are the predictors (Hartung, Knapp, & 
Sinha, 2008). Meta-regression shares with multiple regression all the 
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problems regarding the interpretation of the analysis’ output when the 
predictors are intercorrelated (a likely characteristic of research syn-
thesis data) and when the number of data points (effect sizes in 
meta-regression) are small. 

Still, meta-regression is becoming more popular, especially now 
that meta-analysis programs are available to help you do them. One 
important consideration regarding when to use meta-regression 
involves the effect sizes that serve as the dependent variables. Remem-
ber that the regression analysis makes the assumption that the effect 
sizes are independent of one another. In Chapter 4 I discussed the units 
of analysis in research synthesis and some strategies for minimizing 
multiple outcomes that come from the same sample of participants. In 
meta-regression it is not unusual for the outcome rather than the sam-
ple to be used as the independent unit. This requires adjustments lest 
the estimates of error appear to be more precise than they actually are 
(see Hedges, Tipton, & Johnson, 2010). 

Another approach to addressing the intercorrelation of study char-
acteristics is to first generate homogeneity statistics for each charac-
teristic separately, by repeating the calculation of Q-statistics. Then, 
when the results concerning moderators of effect sizes are interpreted, 
the meta-analysts also examine a matrix of intercorrelations among 
the moderators. This way, the meta-analyst can alert readers to study 
characteristics that may be confounded and draw inferences with 
these relations in mind. For example, we followed this procedure in the 
meta-analysis of the effects of choice on intrinsic motivation. We found 
that the effect of giving choices influenced children’s intrinsic motiva-
tion more positively than adults’ motivation. But we found also that the 
age of the participant was associated with the setting in which the 
choice experiment was conducted; studies with adults were more likely 
to be conducted in a traditional lab setting than were studies with chil-
dren. This means that the different effect of choice on motivation for 
children and adults might not be due to the participants’ age, but 
rather to where the study was conducted.

In sum, then, you need to make many practical decisions when 
conducting a meta-analysis, and the guidelines for making these are 
not as clear as we would like. While it is clear that a formal analysis of 
the variance in effect sizes is an essential part of any research synthesis 
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containing large numbers of comparisons, it is also clear that you must 
take great care in the application of these statistics and in the descrip-
tion of how they were applied.

Using Computer Statistical Packages 

Needless to say, calculating average weighted effect sizes and homoge-
neity statistics by hand is time-consuming and prone to error. Today, it 
is unheard of for meta-analysts to compute statistics for themselves, as 
I have done in the previous examples. Still, it is good for you to examine 
my examples carefully and conduct the calculation yourself, so that 
you understand them. Then, the output of computer packages should 
be more interpretable by you and you should be more able to notice 
any errors that might have occurred. 

Conveniently, the major computer statistics packages have macros 
developed that allow their use to conduct meta-analysis. For example, 
meta-analyses can be run using Excel spreadsheets (Neyeloff, Fuchs, & 
Moreira, 2012). David Wilson’s very helpful website provides free mac-
ros for use with the SPSS, STATA, and SAS software packages. These 
packages are generally familiar to most social scientists. A book is 
available that shows how to use the statistical package R to conduct 
meta-analysis (Chen & Peace, 2013; see also http://cran.r-project.org/
web/views/MetaAnalysis.html for a useful compendium of R programs). 
A free (though support comes at a cost) program dedicated to 
meta-analysis alone is called RevMan (http://tech.cochrane.org/
revman/download). There are also stand-alone meta-analysis pack-
ages that can be purchased such as Comprehensive Meta-Analysis 
(2015) that will produce all the results for you, and give you many 
options for how to carry out your analyses. 

Regardless of how the statistics are calculated, when evaluating a 
research synthesis, you should ask,

Were (a) study design and implementation features along 
with (b) other critical features of studies, including histor-
ical, theoretical, and practical variables, tested as potential 
moderators of study outcomes?
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SOME ADVANCED TECHNIQUES IN META-ANALYSIS

Several more advanced approaches to meta-analysis have emerged in 
recent years. These typically require more advanced statistical knowl-
edge and complex calculations than can be covered in an introductory 
textbook. Below, I will provide a brief conceptual introduction to some 
of the approaches receiving the most attention. Because the complex 
meta-analysis techniques require full treatment to be applied and are 
still used relatively infrequently I will not dwell on them here. If you are 
interested in more advanced techniques, you should first examine 
these in more detailed treatments, especially those given in Cooper 
et al. (2009) and the references provided below.

Hierarchical Linear Modeling

One new approach to meta-analysis involves using hierarchical linear 
modeling (Raudenbush & Bryk, 2001). This approach treats study out-
comes as nested data; for example, students’ achievement scores can 
be viewed as influenced by (nested within) classroom-level variables 
that are themselves influenced by school characteristics and at a 
higher level still by the community the school is in. In the case of 
meta-analysis, a study outcome (an individual effect size) can be 
viewed as nested within a sample of participants who in turn are 
nested within a study (and even within a laboratory that has conducted 
multiple studies). Again, the computations for the analyses are com-
plex but this approach is conceptually appealing and meta-analyses 
using the hierarchical linear modeling approach are used increasingly 
frequently.

Model-Based Meta-Analysis

The statistical procedures for meta-analysis described so far apply to 
synthesizing two-variable relationships from experimental and descrip-
tive research. Meta-analysis methodologists are working to extend 
statistical synthesis procedures to more-complex ways to express the 
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relations between variables. Previously, I discussed the difficulties in 
synthesizing the effect sizes associated with a variable that was 
included in a multiple regression. But what if the question of interest 
involves integrating the output of entire regression equations? For 
example, suppose we were interested in how five personality variables 
(perhaps those in the five-factor model) jointly predicted attitudes 
toward rape? Here, we would want to develop from a meta-analysis a 
regression equation, or perhaps a structural equation model, based on 
the results of a set of studies. To do so, we would need to integrate 
results of studies concerning not one correlation between the variables 
but rather an entire matrix of correlations relating all the variables in 
the model of interest to us. It is this correlation matrix that forms the 
basis of the multiple regression model. 

The techniques used to do this are still being explored, as are the 
problems meta-analysts face in using them. For example, can we sim-
ply conduct separate meta-analyses for each correlation coefficient in 
the matrix and then use the resulting matrix to generate the regression 
equation? The answer is “probably not.” The individual correlations 
would then be based on different samples of participants and a regres-
sion analysis using them can produce nonsensical results, such as pre-
diction equations that explain more than 100% of the variance in the 
criterion variable. Still, there are circumstances under which these 
applications of meta-analysis to complex questions can produce highly 
informative results. Becker (2009) presents an in-depth examination of 
the promise and problems involved in model-driven meta-analysis.6

Bayesian Meta-Analysis

Another approach to meta-analysis involves applying Bayesian statistics 
rather than the frequentist approach used in the statistics described in 
this book. In a Bayesian approach (Sutton & Abrams, 2013; Sutton et al., 
2000), the researcher must first establish a prior estimation of the 
parameters of the effect size. These can include both the magnitude and 
the distribution of effect sizes. The Bayesian priors can be based on past 
research, and not necessarily on research that used identical conceptual 
variables or empirical realizations. For example, the prior estimation of 
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the effect of an exercise intervention might be based on other interven-
tions to improve cognitive functioning, such as puzzle solving. Or, the 
estimation might be based on samples drawn from other populations 
(e.g., using adult samples to estimate the effect of choice on children’s 
motivation) or even on subjective beliefs and personal experience (e.g., 
teachers’ thoughts on the degree to which homework affects achieve-
ment). The meta-analysis then tells the synthesists how these prior 
beliefs should change in light of the new empirical evidence. The need 
for prior estimations in Bayesian analyses is seen as both a strength and 
a weakness of the approach. The computations for Bayesian analyses 
are also very complex and less intuitively accessible than the traditional 
meta-analysis methods but can yield trustworthy and interpretable 
results ( Jonas et al., 2013). 

Meta-Analysis Using Individual Participant Data

The most desirable technique for combining results of independent 
studies is to have available and to integrate the raw data from each 
relevant comparison or estimate of a relationship (Cooper & Patall, 
2009). Then, the individual participant data (IPD) can be placed into a 
new primary data analysis that employs the comparison that gener-
ated the data as a blocking variable. When IPD are available, the 
meta-analysis can perform subgroup analyses that were not conducted 
by the initial data collectors in order to

 � Check data in the original studies,
 � Ensure that the original analyses were conducted properly,
 � Add new information to the data sets,
 � Test with greater power variables that moderate effect sizes, and
 � Test for both between-study and within-study moderators.

Obviously, instances in which the integration of IPD can be 
achieved are rare. IPD are seldom included in research reports, and 
attempts to obtain raw data from researchers often end in failure. 
However, the incentives and requirements for sharing data are 
increasing, as conditions both for receiving research support and for 
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publishing findings. If IPD are retrievable, the meta-analyst still must 
overcome the use of different metrics in different studies, an impor-
tant limit to the ability to statistically combine the results. Also, meta-
analyses using IPD can be expensive because of the recoding involved 
in getting the data sets into similar form and content. So it is unlikely 
that meta-analyses using IPD will be replacing the meta-analysis tech-
niques described previously any time soon. Still, meta-analysis of IPD 
is an attractive alternative, one that has received considerable atten-
tion in the medical literature, and likely will become more attractive 
as the availability of raw data sets improves. Also, methods are 
appearing that allow synthesists to use both IPD from some studies 
and aggregate data from others (Pigott, 2012). 

CUMULATING RESULTS ACROSS META-ANALYSES

The terms cumulative or prospective meta-analyses are used to refer to 
meta-analyses that are updated as new evidence on a topic becomes 
available. The methods for conducting the new analyses can be the 
same as those used originally, or can be changed, perhaps to reflect 
advances in meta-analytic methods or to conduct new analyses that 
time and experience suggest are warranted; for example, looking at a 
new moderators variable that recent theorizing suggests might influ-
ence results. Many cumulative meta-analyses include the year of the 
study as a moderating variable to determine whether the evidence 
suggests the impact of the treatment or intervention is changing over 
time. Cumulative meta-analyses are much more frequently encoun-
tered in the medical than social sciences. In fact, the Cochrane Collab-
oration (2015) requires that synthesists who submit to its database 
commit to updating the reports as new information appears. 

Overviews of reviews. Overviews of reviews, sometimes also called 
reviews of reviews, umbrella reviews, or meta-reviews, compile evi-
dence from multiple research syntheses. Cooper and Koenka (2012) 
catalogued several reasons why an overview of reviews might be 
undertaken. These included (a) to summarize evidence from more 
than one research synthesis focused on the same or overlapping 
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research problems or hypotheses, (b) to compare findings and resolve 
discrepancies in the conclusions drawn in more than one research 
synthesis, and (c) to catalog the mediators and moderators tested in 
research syntheses on the same research problem. Like all research 
syntheses, there are sound methods for conducting an overview of 
reviews that are unique to them. For example, overviewers must 
evaluate the quality of the constituent research syntheses. 

Overviews have their limitations as well. For example, the studies 
included in an overview of reviews can be quite old, considering not 
only that the studies must be conducted, but also that the review of 
studies then must be conducted and this is the evidence in the over-
view. Still, the same forces that are giving rise to the need for research 
syntheses, the expanding research literature, will also provide impetus 
for a growing appearance of overviews of reviews.

Second-order meta-analysis. One type of overview is called a second- 

order meta-analyses. It involves using the outcomes of meta-analyses as 
the data in yet another meta-analysis (Schmidt & Hunter, 2015). In 
second-order meta-analyses the average effects found in meta-analyses 
conducted in the same problem area are themselves combined.  
Obviously, second-order meta-analysis is used when neither the IPD 
nor even the study-level results from the constituent meta-analyses 
can be retrieved. 

One problem faced by second-order meta-analysts (as well as any 
overviewer, only more formally) is how to handle meta-analyses with 
overlapping evidence—that is, the constituent meta-analyses were 
conducted on the same set or a substantial subset of the same primary 
studies. The approaches that have been taken to this nonindependence 
of evidence include simply ignoring the lack of independence, remov-
ing meta-analyses that are highly redundant with others, and conduct-
ing sensitivity analyses—that is, doing the second-order meta-analysis 
with different sets of constituent meta-analyses. Also, the ability of 
second-order meta-analyses to look at influences on the average effect 
sizes can be limited because the moderating and mediating variables 
examined must exist at the level of the meta-analyses that go into the 
second-order meta-analysis, not the individual studies. Still, second- 
order meta-analyses can be done (e.g., Tamim, Bernard, Borokhovski, 
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Abrami, & Schmid, 2011). When the more desirable alternatives are not 
feasible, you should give consideration to doing a second-order 
meta-analysis.

1. For the findings in the table below, what is the average weighted d-index?

2. Are the effect sizes of the seven studies homogeneous? Calculate your 
answer both by hand and by using a computer statistical package.

EXERCISES

NOTES

1. And they permit you to choose whether you want the test to estimate 

sampling error based on participant variation alone or both participant 

and study variation. I will return to this choice later, when I discuss 

fixed-effect and random-effects models.

2. Throughout this chapter and forward, I will use the terms findings, studies,

and comparisons interchangeably to refer to the discrete, independent 

hypothesis tests or estimates of relationships that compose the input for a 

meta-analysis. I do this for exposition purposes, though sometimes these 

terms can have different meanings; for example, a study could contain 

more than one comparison between the same conditions.

Finding ni1 ni2 di 

1 193 173 �.08 

2 54 42 .35 

3 120 160 .47 

4 62 60 .00 

5 70 84 .33 

6 60 60 .41 

7 72 72 �.28 
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3. Borenstein et al. (2009) present formulas for how to combine two noninde-

pendent effect sizes. These authors also provide formulas for how to com-

bine effect sizes for different outcome measures taken on the same sample 

and for the same outcome measure taken on the same sample but at differ-

ent times. The d-index for any two-group comparison can also be calculated 

if you have the means, samples sizes, and overall multi-degree-of-freedom 

F-test using the Practical Meta-Analysis Effect Size Calculator (Wilson, 2015).

4. Remember that measurement reliability can also be used as a moderator 

of effects, so without adjusting measures you could group them by reliabil-

ity and ask, “Is the size of the impact of homework related to the reliability 

of the achievement measure?”

5. Half-standardizing is an alternative way to create similar slopes when only 

outcomes are dissimilar (see Greenwald, Hedges, & Laine, 1996).

6. The use of structural equation modeling in meta-analysis is an emerging 

area that incorporates many of the approaches I have described, not only 

to exploring multiple relationships in the same analysis, but also different 

model assumptions and even missing data techniques (Cheung, 2015). 

Synthesists will need a comfortable knowledge of these methods of struc-

tural equation modeling before they can use them successfully, though 

they can use the available software packages to carry them out.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

Copyright ©2017 by SAGE Publications, Inc. 
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.




