
7 Dummy-Variable
Regression

One of the serious limitations of multiple-regression analysis, as presented in Chapters 5
and 6, is that it accommodates only quantitative response and explanatory variables. In this

chapter and the next, I will explain how qualitative explanatory variables, called factors, can be
incorporated into a linear model.1

The current chapter begins with an explanation of how a dummy-variable regressor can be
coded to represent a dichotomous (i.e., two-category) factor. I proceed to show how a set of dummy
regressors can be employed to represent a polytomous (many-category) factor. I next describe
how interactions between quantitative and qualitative explanatory variables can be represented in
dummy-regression models and how to summarize models that incorporate interactions. Finally,
I explain why it does not make sense to standardize dummy-variable and interaction regressors.

7.1 A Dichotomous Factor

Let us consider the simplest case: one dichotomous factor and one quantitative explanatory
variable. As in the two previous chapters, assume that relationships are additive—that is, that the
partial effect of each explanatory variable is the same regardless of the specific value at which
the other explanatory variable is held constant. As well, suppose that the other assumptions of
the regression model hold: The errors are independent and normally distributed, with zero means
and constant variance.

The general motivation for including a factor in a regression is essentially the same as for includ-
ing an additional quantitative explanatory variable: (1) to account more fully for the response
variable, by making the errors smaller, and (2) even more important, to avoid a biased assess-
ment of the impact of an explanatory variable, as a consequence of omitting another explanatory
variable that is related to it.

For concreteness, suppose that we are interested in investigating the relationship between
education and income among women and men. Figure 7.1(a) and (b) represents two small (ide-
alized) populations. In both cases, the within-gender regressions of income on education are
parallel. Parallel regressions imply additive effects of education and gender on income: Holding
education constant, the “effect” of gender is the vertical distance between the two regression
lines, which—for parallel lines—is everywhere the same. Likewise, holding gender constant,
the “effect” of education is captured by the within-gender education slope, which—for parallel
lines—is the same for men and women.2

In Figure 7.1(a), the explanatory variables gender and education are unrelated to each other:
Women and men have identical distributions of education scores (as can been seen by projecting
the points onto the horizontal axis). In this circumstance, if we ignore gender and regress income
on education alone, we obtain the same slope as is produced by the separate within-gender

1Chapter 14 deals with qualitative response variables.
2I will consider nonparallel within-group regressions in Section 7.3.
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Figure 7.1 Idealized data representing the relationship between income and education for
populations of men (filled circles) and women (open circles). In (a), there is no
relationship between education and gender; in (b), women have a higher average
level of education than men. In both (a) and (b), the within-gender (i.e., partial)
regressions (solid lines) are parallel. In each graph, the overall (i.e., marginal)
regression of income on education (ignoring gender) is given by the broken line.

regressions. Because women have lower incomes than men of equal education, however, by
ignoring gender we inflate the size of the errors.

The situation depicted in Figure 7.1(b) is importantly different. Here, gender and education are
related, and therefore if we regress income on education alone, we arrive at a biased assessment
of the effect of education on income: Because women have a higher average level of education
than men, and because—for a given level of education—women’s incomes are lower, on average,
than men’s, the overall regression of income on education has a negative slope even though the
within-gender regressions have a positive slope.3

In light of these considerations, we might proceed to partition our sample by gender and perform
separate regressions for women and men. This approach is reasonable, but it has its limitations:
Fitting separate regressions makes it difficult to estimate and test for gender differences in income.
Furthermore, if we can reasonably assume parallel regressions for women and men, we can more
efficiently estimate the common education slope by pooling sample data drawn from both groups.
In particular, if the usual assumptions of the regression model hold, then it is desirable to fit the
common-slope model by least squares.

One way of formulating the common-slope model is

Yi = α + βXi + γDi + εi (7.1)

where D, called a dummy-variable regressor or an indicator variable, is coded 1 for men and 0
for women:

Di =
{

1 for men
0 for women

3That marginal and partial relationships can differ in sign is called Simpson’s paradox (Simpson, 1951). Here, the
marginal relationship between income and education is negative, while the partial relationship, controlling for gender, is
positive.
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Figure 7.2 The additive dummy-variable regression model. The line labeled D = 1 is for men;
the line labeled D = 0 is for women.

Thus, for women the model becomes

Yi = α + βXi + γ (0)+ εi = α + βXi + εi

and for men

Yi = α + βXi + γ (1)+ εi = (α + γ )+ βXi + εi

These regression equations are graphed in Figure 7.2.
This is our initial encounter with an idea that is fundamental to many linear models: the dis-

tinction between explanatory variables and regressors. Here, gender is a qualitative explanatory
variable (i.e., a factor), with categories male and female. The dummy variable D is a regressor,
representing the factor gender. In contrast, the quantitative explanatory variable education and
the regressorX are one and the same. Were we to transform education, however, prior to entering
it into the regression equation—say, by taking logs—then there would be a distinction between
the explanatory variable (education) and the regressor (log education). In subsequent sections of
this chapter, it will transpire that an explanatory variable can give rise to several regressors and
that some regressors are functions of more than one explanatory variable.

Returning to Equation 7.1 and Figure 7.2, the coefficient γ for the dummy regressor gives
the difference in intercepts for the two regression lines. Moreover, because the within-gender
regression lines are parallel, γ also represents the constant vertical separation between the lines,
and it may, therefore, be interpreted as the expected income advantage accruing to men when
education is held constant. If men were disadvantaged relative to women with the same level of
education, then γ would be negative. The coefficient α gives the intercept for women, for whom
D = 0; and β is the common within-gender education slope.

Figure 7.3 reveals the fundamental geometric “trick” underlying the coding of a dummy regres-
sor: We are, in fact, fitting a regression plane to the data, but the dummy regressorD is defined only
at the values 0 and 1. The regression plane intersects the planes {X, Y |D = 0} and {X, Y |D = 1}
in two lines, each with slope β. Because the difference between D = 0 and D = 1 is one unit,
the difference in the Y -intercepts of these two lines is the slope of the plane in the D direction,
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Figure 7.3 The geometric “trick” underlying dummy regression: The linear regression plane is
defined only at D = 0 and D = 1, producing two regression lines with slope β and
vertical separation γ . The hollow circles represent women, for whom D = 0, and the
solid circles men, for whom D = 1.

that is γ . Indeed, Figure 7.2 is simply the projection of the two regression lines onto the {X, Y }
plane.

Essentially similar results are obtained if we instead code D equal to 0 for men and 1 for
women, making men the baseline (or reference) category (see Figure 7.4): The sign of γ is
reversed, because it now represents the difference in intercepts between women and men (rather
than vice versa), but its magnitude remains the same. The coefficient α now gives the income
intercept for men. It is therefore immaterial which group is coded 1 and which is coded 0, as
long as we are careful to interpret the coefficients of the model—for example, the sign of γ—in
a manner consistent with the coding scheme that is employed.

To determine whether gender affects income, controlling for education, we can testH0: γ = 0,
either by a t-test, dividing the estimate of γ by its standard error, or, equivalently, by droppingD
from the regression model and formulating an incremental F -test. In either event, the statistical-
inference procedures of the previous chapter apply.

Although I have developed dummy-variable regression for a single quantitative regressor,
the method can be applied to any number of quantitative explanatory variables, as long as we are
willing to assume that the slopes are the same in the two categories of the factor—that is, that the
regression surfaces are parallel in the two groups. In general, if we fit the model

Yi = α + β1Xi1 + · · · + βkXik + γDi + εi

then, for D = 0, we have

Yi = α + β1Xi1 + · · · + βkXik + εi



124 Chapter 7. Dummy-Variable Regression

X

Y

0

α

α + γ

γ
1

β

1

β

D = 0

D = 1

Figure 7.4 The additive dummy-regression model coding D = 0 for men and D = 1 for women
(cf., Figure 7.2).

and, for D = 1,

Yi = (α + γ )+ β1Xi1 + · · · + βkXik + εi

A dichotomous factor can be entered into a regression equation by formulating a dummy
regressor, coded 1 for one category of the factor and 0 for the other category. A model
incorporating a dummy regressor represents parallel regression surfaces, with the constant
vertical separation between the surfaces given by the coefficient of the dummy regressor.

7.2 Polytomous Factors

The coding method of the previous section generalizes straightforwardly to polytomous factors.
By way of illustration, recall (from the previous chapter) the Canadian occupational prestige data.
I have classified the occupations into three rough categories: (1) professional and managerial
occupations, (2) “white-collar” occupations, and (3) “blue-collar” occupations.4

Figure 7.5 shows conditioning plots for the relationship between prestige and each of income
and education within occupational types.5 The partial relationships between prestige and the
explanatory variables appear reasonably linear, although there seems to be evidence that the
income slope varies across the categories of type of occupation (a possibility that I will pursue in
the next section of the chapter). Indeed, this change in slope is an explanation of the nonlinearity
in the relationship between prestige and income that we noticed in Chapter 4. These conditioning

4Although there are 102 occupations in the full data set, several are difficult to classify and consequently were dropped
from the analysis. The omitted occupations are athletes, babysitters, farmers, and “newsboys,” leaving us with 98
observations.

5In the preceding chapter, I also included the gender composition of the occupations as an explanatory variable, but
I omit that variable here. Conditioning plots are described in Section 3.3.4.
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Figure 7.5 Condtioning plots for the relationships between prestige and each of income
(top panel) and education (bottom panel) by type of occupation, for the Canadian
occupational prestige data. Each panel shows the linear least-squares fit and a lowess
smooth with a span of 0.9. The graphs labeled “Professional” are for professional and
managerial occupations.

plots do not tell the whole story, however, because the income and education levels of the occu-
pations are correlated, but they give us a reasonable initial look at the data. Conditioning the plot
for income by level of education (and vice versa) is out of the question here because of the small
size of the data set.

The three-category occupational-type factor can be represented in the regression equation by
introducing two dummy regressors, employing the following coding scheme:

Category D1 D2

Professional and managerial 1 0
White collar 0 1
Blue collar 0 0

(7.2)

A model for the regression of prestige on income, education, and type of occupation is then

Yi = α + β1Xi1 + β2Xi2 + γ1Di1 + γ2Di2 + εi (7.3)
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Figure 7.6 The additive dummy-regression model with two quantitative explanatory variables
X1 and X2 represents parallel planes with potentially different intercepts in the
{X1,X2,Y} space.

where X1 is income and X2 is education. This model describes three parallel regression planes,
which can differ in their intercepts:

Professional: Yi = (α + γ1)+ β1Xi1 + β2Xi2 + εi
White collar: Yi = (α + γ2)+ β1Xi1 + β2Xi2 + εi
Blue collar: Yi = α + β1Xi1 + β2Xi2 + εi

The coefficient α, therefore, gives the intercept for blue-collar occupations; γ1 represents the
constant vertical difference between the parallel regression planes for professional and blue-
collar occupations (fixing the values of education and income); and γ2 represents the constant
vertical distance between the regression planes for white-collar and blue-collar occupations (again,
fixing education and income). Assuming, for simplicity, that all coefficients are positive, and that
γ1 > γ2, the geometry of the model in Equation 7.3 is illustrated in Figure 7.6.

Because blue-collar occupations are coded 0 for both dummy regressors, “blue collar” implic-
itly serves as the baseline category to which the other occupational-type categories are compared.
The choice of a baseline category is essentially arbitrary, for we would fit precisely the same three
regression planes regardless of which of the three occupational-type categories is selected for this
role. The values (and meaning) of the individual dummy-variable coefficients γ1 and γ2 depend,
however, on which category is chosen as the baseline.

It is sometimes natural to select a particular category as a basis for comparison—an experiment
that includes a “control group” comes immediately to mind. In this instance, the individual dummy-
variable coefficients are of interest, because they reflect differences between the “experimental”
groups and the control group, holding other explanatory variables constant.

In most applications, however, the choice of a baseline category is entirely arbitrary, as it is
for the occupational prestige regression. We are, therefore, most interested in testing the null
hypothesis of no effect of occupational type, controlling for education and income,

H0 : γ1 = γ2 = 0 (7.4)
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but the individual hypotheses H0: γ1 = 0 and H0: γ2 = 0—which test, respectively, for differ-
ences between professional and blue-collar occupations and between white-collar and blue-collar
occupations—are of less intrinsic interest.6 The null hypothesis in Equation 7.4 can be tested by the
incremental-sum-of-squares approach, dropping the two dummy variables for type of occupation
from the model.

I have demonstrated how to model the effects of a three-category factor by coding two dummy
regressors. It may seem more natural to treat the three occupational categories symmetrically,
coding three dummy regressors, rather than arbitrarily selecting one category as the baseline:

Category D1 D2 D3

Professional and managerial 1 0 0
White collar 0 1 0
Blue collar 0 0 1

(7.5)

Then, for the j th occupational type, we would have

Yi = (α + γj )+ β1Xi1 + β2Xi2 + εi

The problem with this procedure is that there are too many parameters: We have used four
parameters (α, γ1, γ2, γ3) to represent only three group intercepts. As a consequence, we could
not find unique values for these four parameters even if we knew the three population regression
lines. Likewise, we cannot calculate unique least-squares estimates for the model because the
set of three dummy variables is perfectly collinear; for example, as is apparent from the table in
Equation 7.5, D3 = 1 −D1 −D2.

In general, then, for a polytomous factor with m categories, we need to code m − 1 dummy
regressors. One simple scheme is to select the last category as the baseline and to code Dij = 1
when observation i falls in category j , and 0 otherwise:

Category D1 D2 · · · Dm−1

1 1 0 · · · 0
2 0 1 · · · 0
...

...
...

...
m−1 0 0 · · · 1

m 0 0 · · · 0

(7.6)

A polytomous factor can be entered into a regression by coding a set of 0/1 dummy
regressors, one fewer than the number of categories of the factor. The “omitted” category,
coded 0 for all dummy regressors in the set, serves as a baseline to which the other
categories are compared. The model represents parallel regression surfaces, one for each
category of the factor.

6The essential point here is not that the separate hypotheses are of no interest but that they are an arbitrary subset of the
pairwise differences among the categories. In the present case, where there are three categories, the individual hypotheses
represent two of the three pairwise group comparisons. The third comparison, between professional and white-collar
occupations, is not directly represented in the model, although it is given indirectly by the difference γ1 − γ2. See
Section 7.2.1 for an elaboration of this point.
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When there is more than one factor, and if we assume that the factors have additive effects,
we can simply code a set of dummy regressors for each. To test the hypothesis that the effect of a
factor is nil, we delete its dummy regressors from the model and compute an incremental F -test
of the hypothesis that all the associated coefficients are 0.

Regressing occupational prestige (Y ) on income (X1) and education (X2) produces the fitted
regression equation

Ŷ = −7.621 + 0.001241X1 + 4.292X2 R2 = .81400
(3.116) (0.000219) (0.336)

As is common practice, I have shown the estimated standard error of each regression coefficient
in parentheses beneath the coefficient. The three occupational categories differ considerably in
their average levels of prestige:

Category Number of Cases Mean Prestige

Professional and managerial 31 67.85
White collar 23 42.24
Blue collar 44 35.53

All occupations 98 47.33

Inserting dummy variables for type of occupation into the regression equation, employing the
coding scheme shown in Equation 7.2, produces the following results:

Ŷ = −0.6229 + 0.001013X1 + 3.673X2 + 6.039D1 − 2.737D2
(5.2275) (0.000221) (0.641) (3.867) (2.514)

R2 = .83486 (7.7)

The three fitted regression equations are, therefore,

Professional: Ŷ = 5.416 + 0.001013X1 + 3.673X2

White collar: Ŷ = −3.360 + 0.001013X1 + 3.673X2

Blue collar: Ŷ = −0.623 + 0.001013X1 + 3.673X2

Note that the coefficients for both income and education become slightly smaller when type
of occupation is controlled. As well, the dummy-variable coefficients (or, equivalently, the cate-
gory intercepts) reveal that when education and income levels are held constant statistically, the
difference in average prestige between professional and blue-collar occupations declines greatly,
from 67.85 − 35.53 = 32. 32 points to 6.04 points. The difference between white-collar and
blue-collar occupations is reversed when income and education are held constant, changing from
42.24 − 35.53 = +6. 71 points to −2.74 points. That is, the greater prestige of professional
occupations compared with blue-collar occupations appears to be due mostly to differences in
education and income between these two classes of occupations. While white-collar occupations
have greater prestige, on average, than blue-collar occupations, they have lower prestige than
blue-collar occupations of the same educational and income levels.7

To test the null hypothesis of no partial effect of type of occupation,

H0 : γ1 = γ2 = 0

7These conclusions presuppose that the additive model that we have fit to the data is adequate, which, as we will see in
Section 7.3.5, is not the case.
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we can calculate the incremental F -statistic

F0 = n− k − 1

q
× R2

1 − R2
0

1 − R2
1

(7.8)

= 98 − 4 − 1

2
× .83486 − .81400

1 − .83486
= 5.874

with 2 and 93 degrees of freedom, for which p = .0040. The occupational-type effect is therefore
statistically significant but (examining the coefficient standard errors) not very precisely estimated.
The education and income coefficients are several times their respective standard errors, and hence
are highly statistically significant.

7.2.1 Coefficient Quasi-Variances*

Consider a dummy-regression model with p quantitative explanatory variables and an
m-category factor:

Yi = α + β1Xi1 + · · · + βpXip + γ1Di1 + γ2Di2 + · · · + γm−1Di,m−1 + εi

The dummy-variable coefficients γ1, γ2, . . . , γm−1 represent differences (or contrasts) between
each of the other categories of the factor and the reference category m, holding constant
X1, . . . , Xp. If we are interested in a comparison between any other two categories, we can
simply take the difference in their dummy-regressor coefficients. Thus, in the preceding example
(letting C1 ≡ γ̂1 and C2 ≡ γ̂2),

C1 − C2 = 5.416 − (−3.360) = 8. 776

is the estimated average difference in prestige between professional and white-collar occupations
of equal income and education.

Suppose, however, that we want to know the standard error of C1 − C2. The standard errors
of C1 and C2 are available directly in the regression “output” (Equation 7.7), but to compute the
standard error of C1 − C2, we need in addition the estimated sampling covariance of these two
coefficients. That is,8

SE(C1 − C2) =
√
V̂ (C1)+ V̂ (C2)− 2 × Ĉ(C1, C2)

where V̂ (Cj ) = [
SE(Cj )

]2 is the estimated sampling variance of coefficient Cj , and Ĉ(C1, C2)

is the estimated sampling covariance of C1 and C2. For the occupational prestige regression,
Ĉ(C1, C2) = 6.797, and so

SE(C1 − C2) =
√

3.8672 + 2.5142 − 2 × 6.797 = 2. 771

We can use this standard error in the normal manner for a t-test of the difference between C1 and
C2.9 For example, noting that the difference exceeds twice its standard error suggests that it is
statistically significant.

8See Appendix D on probability and estimation. The computation of regression-coefficient covariances is taken up in
Chapter 9.

9Testing all differences between pairs of factor categories raises an issue of simultaneous inference, however. See the
discussion of Scheffé confidence intervals in Section 9.4.4.
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Although computer programs for regression analysis typically report the covariance matrix
of the regression coefficients if asked to do so, it is not common to include coefficient covari-
ances in published research along with estimated coefficients and standard errors, because with
k + 1 coefficients in the model, there are k(k + 1)/2 variances and covariances among them—a
potentially large number. Readers of a research report are therefore put at a disadvantage by the
arbitrary choice of a reference category in dummy regression, because they are unable to calculate
the standard errors of the differences between all pairs of categories of a factor.

Quasi-variances of dummy-regression coefficients (Firth, 2003; Firth & De Menezes, 2004)
speak to this problem. Let Ṽ (Cj ) denote the quasi-variance of dummy coefficient Cj . Then,

SE(Cj − Cj ′) ≈
√
Ṽ (Cj )+ Ṽ (Cj ′)

The squared relative error of this approximation for the contrast Cj − Cj ′ is

REjj ′ ≡ Ṽ (Cj − Cj ′)

V̂ (Cj − Cj ′)
= Ṽ (Cj )+ Ṽ (Cj ′)

V̂ (Cj )+ V̂ (Cj ′)− 2 × Ĉ(Cj , Cj ′)

The approximation is accurate for this contrast when REjj ′ is close to 1, or, equivalently, when

log(REjj ′) = log
[
Ṽ (Cj )+ Ṽ (Cj ′)

]− log
[
V̂ (Cj )+ V̂ (Cj ′)− 2 × Ĉ(Cj , Cj ′)

]
is close to 0. The quasi-variances Ṽ (Cj ) are therefore selected to minimize the sum of squared log

relative errors of approximation over all pairwise contrasts,
∑
j<j ′

[
log(REjj ′)

]2. The resulting
errors of approximation are typically very small (Firth, 2003; Firth & De Menezes, 2004).

The following table gives dummy-variable coefficients, standard errors, and quasi-variances
for type of occupation in the Canadian occupational prestige regression:

Category Cj SE(Cj) Ṽ(Cj)

Professional 6.039 3.867 8.155
White collar −2.737 2.514 −0.4772
Blue collar 0 0 6.797

I have set to 0 the coefficient (and its standard error) for the baseline category, blue collar. The
negative quasi-variance for the white-collar coefficient is at first blush disconcerting (after all,
ordinary variances cannot be negative), but it is not wrong: The quasi-variances are computed to
provide accurate variance approximations for coefficient differences; they do not apply directly to
the coefficients themselves. For the contrast between professional and white-collar occupations,
we have

SE(C1 − C2) ≈ √
8.155 − 0.4772 = 2.771

Likewise, for the contrast between professional and blue-collar occupations,

C1 − C3 = 6.039 − 0 = 6.039

SE(C1 − C3) ≈ √
8.155 + 6.797 = 3.867

Note that in this application, the quasi-variance “approximation” to the standard error proves to be
exact, and indeed this is necessarily the case when there are just three factor categories, because
there are then just three pairwise differences among the categories to capture.10

10For the details of the computation of quasi-variances, see Chapter 15, Exercise 15.11.
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Figure 7.7 Idealized data representing the relationship between income and education
for populations of men (filled circles) and women (open circles). In (a), there is no
relationship between education and gender; in (b), women have a higher average level
of education than men. In both cases, the within-gender regressions (solid lines) are not
parallel—the slope for men is greater than the slope for women—and, consequently,
education and gender interact in affecting income. In each graph, the overall
regression of income on education (ignoring gender) is given by the broken line.

7.3 Modeling Interactions

Two explanatory variables are said to interact in determining a response variable when the partial
effect of one depends on the value of the other. The additive models that we have considered
thus far therefore specify the absence of interactions. In this section, I will explain how the
dummy-variable regression model can be modified to accommodate interactions between factors
and quantitative explanatory variables.11

The treatment of dummy-variable regression in the preceding two sections has assumed parallel
regressions across the several categories of a factor. If these regressions are not parallel, then the
factor interacts with one or more of the quantitative explanatory variables. The dummy-regression
model can easily be modified to reflect these interactions.

For simplicity, I return to the contrived example of Section 7.1, examining the regression
of income on gender and education. Consider the hypothetical data shown in Figure 7.7 (and
contrast these examples with those shown in Figure 7.1 on page 121, where the effects of gender
and education are additive). In Figure 7.7(a) [as in Figure 7.1(a)], gender and education are
independent, because women and men have identical education distributions; in Figure 7.7(b)
[as in Figure 7.1(b)], gender and education are related, because women, on average, have higher
levels of education than men.

It is apparent in both Figure 7.7(a) and Figure 7.7(b), however, that the within-gender regres-
sions of income on education are not parallel: In both cases, the slope for men is larger than the
slope for women. Because the effect of education varies by gender, education and gender interact
in affecting income.

It is also the case, incidentally, that the effect of gender varies by education. Because the
regressions are not parallel, the relative income advantage of men changes (indeed, grows) with

11Interactions between factors are taken up in the next chapter on analysis of variance; interactions between quantitative
explanatory variables are discussed in Section 17.1 on polynomial regression.
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education. Interaction, then, is a symmetric concept—that the effect of education varies by gender
implies that the effect of gender varies by education (and, of course, vice versa).

The simple examples in Figures 7.1 and 7.7 illustrate an important and frequently misunder-
stood point: Interaction and correlation of explanatory variables are empirically and logically
distinct phenomena. Two explanatory variables can interact whether or not they are related to one
another statistically. Interaction refers to the manner in which explanatory variables combine to
affect a response variable, not to the relationship between the explanatory variables themselves.

Interaction and correlation of explanatory variables are empirically and logically distinct
phenomena. Two explanatory variables can interact whether or not they are related to
one another statistically. Interaction refers to the manner in which explanatory variables
combine to affect a response variable, not to the relationship between the explanatory
variables themselves.

7.3.1 Constructing Interaction Regressors

We could model the data in Figure 7.7 by fitting separate regressions of income on education
for women and men. As before, however, it is more convenient to fit a combined model, primarily
because a combined model facilitates a test of the gender-by-education interaction. Moreover, a
properly formulated unified model that permits different intercepts and slopes in the two groups
produces the same fit to the data as separate regressions: The full sample is composed of the two
groups, and, consequently, the residual sum of squares for the full sample is minimized when the
residual sum of squares is minimized in each group.12

The following model accommodates different intercepts and slopes for women and men:

Yi = α + βXi + γDi + δ(XiDi)+ εi (7.9)

Along with the quantitative regressor X for education and the dummy regressor D for gender,
I have introduced the interaction regressor XD into the regression equation. The interaction
regressor is the product of the other two regressors; althoughXD is therefore a function ofX and
D, it is not a linear function, and perfect collinearity is avoided.13

For women, model (7.9) becomes

Yi = α + βXi + γ (0)+ δ(Xi · 0)+ εi

= α + βXi + εi

and for men

Yi = α + βXi + γ (1)+ δ(Xi · 1)+ εi

= (α + γ )+ (β + δ)Xi + εi

12See Exercise 7.4.
13If this procedure seems illegitimate, then think of the interaction regressor as a new variable, say Z ≡ XD. The
model is linear in X, D, and Z. The “trick” of introducing an interaction regressor is similar to the trick of formu-
lating dummy regressors to capture the effect of a factor: In both cases, there is a distinction between explanatory
variables and regressors. Unlike a dummy regressor, however, the interaction regressor is a function of both explanatory
variables.
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1

β + δ

D = 1

D = 0

Figure 7.8 The dummy-variable regression model with an interaction regressor. The line labeled
D = 1 is for men; the line labeled D = 0 is for women.

These regression equations are graphed in Figure 7.8: The parameters α and β are, respectively,
the intercept and slope for the regression of income on education among women (the baseline
category for gender); γ gives the difference in intercepts between the male and female groups;
and δ gives the difference in slopes between the two groups. To test for interaction, therefore, we
may simply test the hypothesis H0: δ = 0.

Interactions can be incorporated by coding interaction regressors, taking products of
dummy regressors with quantitative explanatory variables. The resulting model permits
different slopes in different groups—that is, regression surfaces that are not parallel.

In the additive, no-interaction model of Equation 7.1 and Figure 7.2, the dummy-regressor
coefficient γ represents the unique partial effect of gender (i.e., the expected income difference
between men and women of equal education, regardless of the value at which education is fixed),
while the slope β represents the unique partial effect of education (i.e., the within-gender expected
increment in income for a one-unit increase in education, for both women and men). In the
interaction model of Equation 7.9 and Figure 7.8, in contrast, γ is no longer interpretable as the
unqualified income difference between men and women of equal education.

Because the within-gender regressions are not parallel, the separation between the regression
lines changes; here, γ is simply the separation atX = 0—that is, above the origin. It is generally no
more important to assess the expected income difference between men and women of 0 education
than at other educational levels, and therefore the difference-in-intercepts parameter γ is not of
special interest in the interaction model. Indeed, in many instances (although not here), the value
X = 0 may not occur in the data or may be impossible (as, for example, if X is weight). In such
cases, γ has no literal interpretation in the interaction model (see Figure 7.9).

Likewise, in the interaction model, β is not the unqualified partial effect of education, but rather
the effect of education among women. Although this coefficient is of interest, it is not necessarily
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X
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0 x

α

D = 1

D = 0

α + γ

Figure 7.9 Why the difference in intercepts does not represent a meaningful partial effect for a
factor when there is interaction: The difference-in-intercepts parameter γ is negative
even though, within the range of the data, the regression line for the group coded
D = 1 is above the line for the group coded D = 0.

(a)

X

Y

0

α

1
β

1

β + δ
D = 0

D = 1

(b)

X

Y

0

α
α + γ

1

δ

D = 1

D = 0

Figure 7.10 Two models that violate the principle of marginality: In (a), the dummy regressor D is
omitted from the model E(Y) = α + βX + δ (XD); in (b), the quantitative explanatory
variable X is omitted from the model E(Y) = α + γD + δ(XD). These models violate
the principle of marginality because they include the term XD, which is a
higher-order relative of both X and D (one of which is omitted from each model).
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more important than the effect of education among men (β + δ), which does not appear directly
in the model.

7.3.2 The Principle of Marginality

Following Nelder (1977), we say that the separate partial effects, or main effects, of education
and gender are marginal to the education-by-gender interaction. In general, we neither test nor
interpret the main effects of explanatory variables that interact. If, however, we can rule out
interaction either on theoretical or on empirical grounds, then we can proceed to test, estimate,
and interpret the main effects.

As a corollary to this principle, it does not generally make sense to specify and fit models that
include interaction regressors but that omit main effects that are marginal to them. This is not to
say that such models—which violate the principle of marginality—are uninterpretable: They are,
rather, not broadly applicable.

The principle of marginality specifies that a model including a high-order term (such as
an interaction) should normally also include the “lower-order relatives” of that term (the
main effects that “compose” the interaction).

Suppose, for example, that we fit the model

Yi = α + βXi + δ(XiDi)+ εi

which omits the dummy regressor D, but includes its “higher-order relative” XD. As shown in
Figure 7.10(a), this model describes regression lines for women and men that have the same
intercept but (potentially) different slopes, a specification that is peculiar and of no substantive
interest. Similarly, the model

Yi = α + γDi + δ(XiDi)+ εi

graphed in Figure 7.10(b), constrains the slope for women to 0, which is needlessly restrictive.

7.3.3 Interactions With Polytomous Factors

The method for modeling interactions by forming product regressors is easily extended to
polytomous factors, to several factors, and to several quantitative explanatory variables. I will use
the Canadian occupational prestige regression to illustrate the application of the method, enter-
taining the possibility that occupational type interacts both with income (X1) and with education
(X2):

Yi = α + β1Xi1 + β2Xi2 + γ1Di1 + γ2Di2

+ δ11Xi1Di1 + δ12Xi1Di2 + δ21Xi2Di1 + δ22Xi2Di2 + εi (7.10)

Note that we require one interaction regressor for each product of a dummy regressor with a
quantitative explanatory variable. The regressorsX1D1 andX1D2 capture the interaction between
income and occupational type; X2D1 and X2D2 capture the interaction between education and
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occupational type. The model therefore permits different intercepts and slopes for the three types
of occupations:

Professional: Yi = (α + γ1) + (β1 + δ11)Xi1 + (β2 + δ21)Xi2 + εi
White collar: Yi = (α + γ2) + (β1 + δ12)Xi1 + (β2 + δ22)Xi2 + εi
Blue collar: Yi = α + β1Xi1 + β2Xi2 + εi

(7.11)

Blue-collar occupations, which are coded 0 for both dummy regressors, serve as the baseline
for the intercepts and slopes of the other occupational types. As in the no-interaction model, the
choice of baseline category is generally arbitrary, as it is here, and is inconsequential. Fitting the
model in Equation 7.10 to the prestige data produces the following results:

Ŷi = 2.276
(7.057)

+ 0.003522X1
(0.000556)

+ 1.713X2
(0.927)

+ 15.35D1
(13.72)

− 33.54D2
(17.54)

− 0.002903X1D1
(0.000599)

− 0.002072X1D2
(0.000894)

+ 1.388X2D1
(1.289)

+ 4.291X2D2
(1.757)

R2 = .8747 (7.12)

This example is discussed further in the following section.

7.3.4 Interpreting Dummy-Regression Models With Interactions

It is difficult in dummy-regression models with interactions (and in other complex statistical
models) to understand what the model is saying about the data simply by examining the regres-
sion coefficients. One approach to interpretation, which works reasonably well in a relatively
straightforward model such as Equation 7.12, is to write out the implied regression equation for
each group (using Equation 7.11):

Professional: ̂Prestige = 17.63 + 0.000619 × Income + 3.101 × Education

White collar: ̂Prestige = −31.26 + 0.001450 × Income + 6.004 × Education

Blue collar: ̂Prestige = 2.276 + 0.003522 × Income + 1.713 × Education

(7.13)

From these equations, we can see, for example, that income appears to make much more difference
to prestige in blue-collar occupations than in white-collar occupations, and has even less impact
on prestige in professional and managerial occupations. Education, in contrast, has the largest
impact on prestige among white-collar occupations, and has the smallest effect in blue-collar
occupations.

An alternative approach (from Fox, 1987, 2003; Fox & Andersen, 2006) that generalizes readily
to more complex models is to examine the high-order terms of the model. In the illustration,
the high-order terms are the interactions between income and type and between education and
type.

• Focusing in turn on each high-order term, we allow the variables in the term to range over
their combinations of values in the data, fixing other variables to typical values. For example,
for the interaction between type and income, we let type of occupation take on successively
the categories blue collar, white collar, and professional (for which the dummy regressors
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D1 and D2 are set to the corresponding values given in Equation 7.6), in combination
with income values between $1500 and $26,000 (the approximate range of income in the
Canadian occupational prestige data set); education is fixed to its average value in the data,
X2 = 10.79.

• We next compute the fitted value of prestige at each combination of values of income and
type of occupation. These fitted values are graphed in the “effect display” shown in the
upper panel of Figure 7.11; the lower panel of this figure shows a similar effect display for
the interaction between education and type of occupation, holding income at its average
value. The broken lines in Figure 7.11 give ±2 standard errors around the fitted values—
that is, approximate 95% pointwise confidence intervals for the effects.14 The nature of the
interactions between income and type and between education and type is readily discerned
from these graphs.

7.3.5 Hypothesis Tests for Main Effects and Interactions

To test the null hypothesis of no interaction between income and type, H0: δ11 = δ12 = 0, we
need to delete the interaction regressorsX1D1 andX1D2 from the full model (Equation 7.10) and
calculate an incremental F -test; likewise, to test the null hypothesis of no interaction between
education and type,H0: δ21 = δ22 = 0, we delete the interaction regressorsX2D1 andX2D2 from
the full model. These tests, and tests for the main effects of income, education, and occupational
type, are detailed in Tables 7.1 and 7.2: Table 7.1 gives the regression sums of squares for several
models, which, along with the residual sum of squares for the full model, RSS1 = 3553, are the
building blocks of the incremental F -tests shown in Table 7.2. Table 7.3 shows the hypothesis
tested by each of the incremental F -statistics in Table 7.2.

Although the analysis-of-variance table (Table 7.2) conventionally shows the tests for the main
effects of education, income, and type before the education-by-type and income-by-type inter-
actions, the structure of the model makes it sensible to examine the interactions first: Conforming
to the principle of marginality, the test for each main effect is computed assuming that the inter-
actions that are higher-order relatives of the main effect are 0 (as shown in Table 7.3). Thus,
for example, the test for the income main effect assumes that the income-by-type interaction
is absent (i.e., that δ11 = δ12 = 0), but not that the education-by-type interaction is absent
(δ21 = δ22 = 0).15

The principle of marginality serves as a guide to constructing incremental F -tests for the
terms in a model that includes interactions.

In this case, then, there is weak evidence of an interaction between education and type of
occupation, and much stronger evidence of an income-by-type interaction. Considering the small
number of cases, we are squeezing the data quite hard, and it is apparent from the coefficient
standard errors (in Equation 7.12) and from the effect displays in Figure 7.11 that the interactions
are not precisely estimated. The tests for the main effects of income, education, and type, computed
assuming that the higher-order relatives of each such term are absent, are all highly statistically

14For standard errors of fitted values, see Exercise 9.14.
15Tests constructed to conform to the principle of marginality are sometimes called “type-II” tests, terminology introduced
by the SAS statistical software package. This terminology, and alternative tests, are described in the next chapter.
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Table 7.1 Regression Sums of Squares for Several Models Fit to the Canadian
Occupational Prestige Data

Regression
Model Terms Parameters Sum of Squares df

1 I,E,T,I ×T,E ×T
α, β1, β2, γ 1, γ 2,
δ11, δ12, δ21, δ22

24,794. 8

2 I,E,T,I ×T
α, β1, β2, γ 1, γ 2,

δ11, δ12
24,556. 6

3 I,E,T,E ×T
α, β1, β2, γ 1, γ 2,

δ21, δ22
23,842. 6

4 I,E,T α, β1, β2, γ 1, γ 2 23,666. 4
5 I,E α, β1, β2 23,074. 2

6 I,T,I ×T
α, β1, γ 1, γ 2,
δ11, δ12

23,488. 5

7 E,T,E ×T
α, β2, γ 1, γ 2,
δ21, δ22

22,710. 5

NOTE: These sums of squares are the building blocks of incremental F-tests for the main and
interaction effects of the explanatory variables. The following code is used for “terms” in the
model: I, income; E, education; T, occupational type.

Table 7.2 Analysis-of-Variance Table, Showing Incremental F-Tests for the
Terms in the Canadian Occupational Prestige Regression

Models Sum of
Source Contrasted Squares df F p

Income 3−7 1132. 1 28.35 <.0001
Education 2−6 1068. 1 26.75 <.0001
Type 4−5 592. 2 7.41 <.0011
Income × Type 1−3 952. 2 11.92 <.0001
Education × Type 1−2 238. 2 2.98 .056
Residuals 3553. 89

Total 28,347. 97

Table 7.3 Hypotheses Tested by the Incremental F-Tests in Table 7.2

Models
Source Contrasted Null Hypothesis

Income 3–7 β1 = 0 | δ11 = δ12 = 0
Education 2–6 β2 = 0 | δ21 = δ22 = 0
Type 4–5 γ 1 = γ 2 = 0 | δ11 = δ12 = δ21 = δ22 = 0
Income ×Type 1–3 δ11 = δ12 = 0
Education × Type 1–2 δ21 = δ22 = 0
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significant. In light of the strong evidence for an interaction between income and type, however,
the income and type main effects are not really of interest.16

The degrees of freedom for the several sources of variation add to the total degrees of freedom,
but—because the regressors in different sets are correlated—the sums of squares do not add to the
total sum of squares.17 What is important here (and more generally) is that sensible hypotheses
are tested, not that the sums of squares add to the total sum of squares.

7.4 A Caution Concerning Standardized Coefficients

In Chapter 5, I explained the use—and limitations—of standardized regression coefficients. It is
appropriate to sound another cautionary note here: Inexperienced researchers sometimes report
standardized coefficients for dummy regressors. As I have explained, an unstandardized coeffi-
cient for a dummy regressor is interpretable as the expected response-variable difference between
a particular category and the baseline category for the dummy-regressor set (controlling, of course,
for the other explanatory variables in the model).

If a dummy-regressor coefficient is standardized, then this straightforward interpretation is
lost. Furthermore, because a 0/1 dummy regressor cannot be increased by one standard devi-
ation, the usual interpretation of a standardized regression coefficient also does not apply.
Standardization is a linear transformation, so many characteristics of the regression model—
the value of R2, for example—do not change, but the standardized coefficient itself is not
directly interpretable. These difficulties can be avoided by standardizing only the response
variable and quantitative explanatory variables in a regression, leaving dummy regressors in
0/1 form.

A similar point applies to interaction regressors. We may legitimately standardize a quantitative
explanatory variable prior to taking its product with a dummy regressor, but to standardize the
interaction regressor itself is not sensible: The interaction regressor cannot change independently
of the main-effect regressors that compose it and are marginal to it.

It is not sensible to standardize dummy regressors or interaction regressors.

Exercises

Exercise 7.1. Suppose that the values −1 and 1 are used for the dummy regressor D in
Equation 7.1 instead of 0 and 1. Write out the regression equations for men and women, and
explain how the parameters of the model are to be interpreted. Does this alternative coding of the

16We tested the occupational type main effect in Section 7.2 (Equation 7.8 on page 129), but using an estimate of error
variance based on Model 4, which does not contain the interactions. In Table 7.2, the estimated error variance is based on
the full model, Model 1. Sound general practice is to use the largest model fit to the data to estimate the error variance
even when, as is frequently the case, this model includes effects that are not statistically significant. The largest model
necessarily has the smallest residual sum of squares, but it also has the fewest residual degrees of freedom. These two
factors tend to offset one another, and it usually makes little difference whether the estimated error variance is based on
the full model or on a model that deletes nonsignificant terms. Nevertheless, using the full model ensures an unbiased
estimate of the error variance.
17See Section 10.2 for a detailed explanation of this phenomenon.
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dummy regressor adequately capture the effect of gender? Is it fair to conclude that the dummy-
regression model will “work” properly as long as two distinct values of the dummy regressor are
employed, one each for women and men? Is there a reason to prefer one coding to another?

Exercise 7.2. Adjusted means (based on Section 7.2): Let Y 1 represent the (“unadjusted”) mean
prestige score of professional occupations in the Canadian occupational prestige data, Y 2 that of
white-collar occupations, and Y 3 that of blue-collar occupations. Differences among the Y j may
partly reflect differences among occupational types in their income and education levels. In the
dummy-variable regression in Equation 7.7, type-of-occupation differences are “controlled” for
income and education, producing the fitted regression equation

Ŷ = A+ B1X1 + B2X2 + C1D1 + C2D2

Consequently, if we fix income and education at particular values—say,X1 = x1 andX2 = x2—
then the fitted prestige scores for the several occupation types are given by (treating “blue collar”
as the baseline type):

Ŷ1 = (A+ C1) + B1x1 + B2x2

Ŷ2 = (A+ C2) + B1x1 + B2x2

Ŷ3 = A + B1x1 + B2x2

(a) Note that the differences among the Ŷj depend only on the dummy-variable coefficients
C1 and C2 and not on the values of x1 and x2. Why is this so?

(b) When x1 = X1 and x2 = X2, the Ŷj are called adjusted means and are denoted Ỹj . How
can the adjusted means Ỹj be interpreted? In what sense is Ỹj an “adjusted” mean?

(c) Locate the “unadjusted” and adjusted means for women and men in each of Figures 7.1(a)
and (b) (on page 121). Construct a similar figure in which the difference between adjusted
means is smaller than the difference in unadjusted means.

(d) Using the results in the text, along with the mean income and education values for the three
occupational types, compute adjusted mean prestige scores for each of the three types,
controlling for income and education. Compare the adjusted with the unadjusted means
for the three types of occupations and comment on the differences, if any, between them.

Exercise 7.3. Can the concept of an adjusted mean, introduced in Exercise 7.2, be extended to
a model that includes interactions? If so, show how adjusted means can be found for the data in
Figure 7.7(a) and (b) (on page 131).

Exercise 7.4. Verify that the regression equations for each occupational type given in
Equation 7.13 (page 136) are identical to the results obtained by regressing prestige on income
and education separately for each of the three types of occupations. Explain why this is the case.

Summary

• A dichotomous factor can be entered into a regression equation by formulating a dummy
regressor, coded 1 for one category of the variable and 0 for the other category. A model
incorporating a dummy regressor represents parallel regression surfaces, with the constant
separation between the surfaces given by the coefficient of the dummy regressor.

• A polytomous factor can be entered into a regression by coding a set of 0/1 dummy regres-
sors, one fewer than the number of categories of the factor. The “omitted” category, coded
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0 for all dummy regressors in the set, serves as a baseline to which the other categories are
compared. The model represents parallel regression surfaces, one for each category of the
factor.

• Interactions can be incorporated by coding interaction regressors, taking products of dummy
regressors with quantitative explanatory variables. The model permits different slopes in
different groups—that is, regression surfaces that are not parallel.

• Interaction and correlation of explanatory variables are empirically and logically distinct
phenomena. Two explanatory variables can interact whether or not they are related to one
another statistically. Interaction refers to the manner in which explanatory variables combine
to affect a response variable, not to the relationship between the explanatory variables
themselves

• The principle of marginality specifies that a model including a high-order term (such as an
interaction) should normally also include the lower-order relatives of that term (the main
effects that “compose” the interaction). The principle of marginality also serves as a guide
to constructing incremental F -tests for the terms in a model that includes interactions, and
for examining the effects of explanatory variables.

• It is not sensible to standardize dummy regressors or interaction regressors.




