Conceptual Framework

What Do You Think Is Going On?

Biologist Bernd Heinrich (1984, pp. 141–151) and his associates once spent a summer conducting detailed, systematic research on ant lions, small insects that trap ants in pits they have dug. Returning to the university in the fall, Heinrich was surprised to discover that his results were quite different from those published by other researchers. Redoing his experiments the following summer to try to understand these discrepancies, Heinrich found that he and his fellow researchers had been led astray by an unexamined assumption they had made about the ant lions’ time frame: Their observations hadn’t been long enough to detect some key aspects of these insects’ behavior. As he concluded, “even carefully collected results can be misleading if the underlying context of assumptions is wrong” (1984, p. 151).

For this reason, the conceptual framework of your study—the system of concepts, assumptions, expectations, beliefs, and theories that supports and informs your research—is a key part of your design (Miles & Huberman, 1994; Robson, 2002). Miles and Huberman (1994) defined a conceptual framework as a visual or written product, one that “explains, either graphically or in narrative form, the main things to be studied—the key factors, concepts, or variables—and the presumed relationships among them” (p. 18). Here, I use the term in a broader sense that includes the actual ideas and beliefs that you hold about the phenomena studied, whether these are written down or not. This may also be called the “theoretical framework” or “idea context” for the study.

The most important thing to understand about your conceptual framework is that it is primarily a conception or model of what is out there that you plan to study, and of what is going on with these things and why—a tentative theory of the phenomena that you are investigating. The function of this theory is to inform the rest of your design—to help you to assess and refine your goals, develop realistic and relevant research questions, select appropriate methods,
and identify potential validity threats to your conclusions. It also helps you *justify* your research, something I discuss in more detail in Chapter 7. In this chapter, I discuss the different sources for this theory, and how to use theory effectively in your design. I describe the *nature* of theory in more detail later in the chapter, in dealing with the uses of existing theory. Here, I want to emphasize that your conceptual framework *is* a theory, however tentative or incomplete it may be.

What is often called the “research problem” is a part of your conceptual framework, and formulating the research problem is often seen as a key task in designing your study. It is part of your conceptual framework (although it is often treated as a separate component of a research design) because it identifies something that is *going on* in the world, something that is itself problematic or that has consequences that are problematic. Your research problem functions (in combination with your goals) to *justify* your study, to show people why your research is important. In addition, this problem is something that is not fully understood, or that we don’t adequately know how to deal with, and therefore we want more information about it. Not every study will have an explicit statement of a research problem, but every worthwhile research design contains an implicit or explicit identification of some issue or problem, intellectual or practical, about which more information is needed. (The justification of “needed” is where your goals come into play.)

Many writers label the part of a research design, proposal, or published paper that deals with the conceptual framework of a study the “literature review.” This can be a dangerously misleading term. In developing your conceptual framework, you should *not* simply summarize some body of theoretical or empirical publications, for three reasons:

1. It can lead to a narrow focus on “the literature,” ignoring other conceptual resources that may be of equal or greater importance for your study. As Locke, Spirduso, and Silverman (1993) pointed out, “in any active area of inquiry the current knowledge base is not in the library—it is in the invisible college of informal associations among research workers” (p. 48). This knowledge can be found in unpublished papers, dissertations in progress, and grant applications, as well as in the heads of researchers working in this field. Locke et al. (1993) stated that “the best introduction to the current status of a research area is close association with advisors who know the territory” (p. 49). In addition, an exclusive orientation toward “the literature” leads you to ignore your own experience, your speculative thinking (discussed below in the section titled “Thought Experiments”), and any pilot and exploratory research that you’ve done.
2. It tends to generate a strategy of “covering the field” rather than focusing specifically on those studies and theories that are particularly relevant to your research. Literature reviews that lose sight of this need for relevance often degenerate into a series of “book reports” on the literature, with no clear connecting thread or argument. The relevant studies may be only a small part of the research in a defined field, and may range across a number of different approaches and disciplines. In fact, the most productive conceptual frameworks are often those that integrate different approaches, lines of investigation, or theories that no one had previously connected. Bernd Heinrich used Adam Smith’s *The Wealth of Nations* in developing a theory of bumblebee foraging and energy balance that emphasized individual initiative, competition, and a spontaneous division of labor, rather than genetic determination or centralized control (Heinrich, 1979, pp. 144–146, 1984, p. 79).

3. It can lead you to think that your task is simply descriptive—to report what previous researchers have found or what theories have been proposed. In constructing a conceptual framework, your purpose is not only descriptive, but also critical; you need to understand (and clearly communicate in your proposal) what problems (including ethical problems) there have been with previous research and theory, what contradictions or holes you have found in existing views, and how your study can make an original contribution to our understanding. You need to treat “the literature” not as an authority to be deferred to, but as a useful but fallible source of ideas about what’s going on, and to attempt to see alternative ways of framing the issues. For good examples of this attitude, see Example 3.2 and the “Context” section of Martha Regan-Smith’s proposal (see the Appendix).

Another way of putting this is that the conceptual framework for your research study is something that is constructed, not found. It incorporates pieces that are borrowed from elsewhere, but the structure, the overall coherence, is something that you build, not something that exists ready-made. It is important for you to pay attention to the existing theories and research that are relevant to what you plan to study, because these are often key sources for understanding what is going on with these phenomena. However, these theories and results are often partial, misleading, or simply wrong. Bernd Heinrich found that many of the ideas about ant lions in the literature were incorrect, and his subsequent research led to a much more comprehensive and well-supported theory of their behavior. You will need to critically examine each idea or research finding to see if it is a valid and useful module for constructing a theory that will adequately inform your study.

This idea that existing theory and research provide “modules” that you can use in your own research was developed at length by Becker (1986, pp. 141–146). As he stated,
I am always collecting such prefabricated parts for use in future arguments. Much of my reading is governed by a search for such useful modules. Sometimes I know I need a particular theoretical part and even have a good idea of where to find it (often thanks to my graduate training in theory, to say a good word for what I so often feel like maligning). (1986, p. 144)

Before describing the sources of these modules, I want to discuss a particularly important part of your conceptual framework—the research paradigm(s) within which you situate your work.

CONNECTING WITH A RESEARCH PARADIGM

One of the critical decisions that you will need to make in designing your study is the paradigm (or paradigms) within which you will situate your work. This use of the term “paradigm,” which derives from the work of the historian of science Thomas Kuhn, refers to a set of very general philosophical assumptions about the nature of the world (ontology) and how we can understand it (epistemology), assumptions that tend to be shared by researchers working in a specific field or tradition. Paradigms also typically include specific methodological strategies linked to these assumptions, and identify particular studies that are seen as exemplifying these assumptions and methods. At the most abstract and general level, examples of such paradigms are philosophical positions such as positivism, constructivism, realism, and pragmatism, each embodying very different ideas about reality and how we can gain knowledge of it. At a somewhat more specific level, paradigms that are relevant to qualitative research include interpretivism, critical theory, feminism, postmodernism, and phenomenology, and there are even more specific traditions within these.

It is well beyond the scope of this book to describe these paradigms and how they can inform a qualitative study; good discussions of these issues can be found in Creswell (1998) and Schram (2003). However, I want to make several points that are relevant to using paradigms in your research design:

1. Although some people refer to “the qualitative paradigm,” there are many different paradigms within qualitative research, some of which differ radically in their assumptions and implications (cf. Denzin & Lincoln, 2000; Pitman & Maxwell, 1992). It will be important to your research design (and your proposal) to make explicit which paradigm(s) your work will draw on, since a clear paradigmatic stance helps to guide your design decisions and to justify these decisions. Using an established paradigm allows you to build on a coherent and well-developed approach to research, rather than having to construct all of this yourself.
2. You don’t have to adopt in total a single paradigm or tradition. It is possible to combine aspects of different paradigms and traditions, although if you do this, you will need to carefully assess the compatibility of the modules that you borrow from each. Schram (2003, p. 79) gave a valuable account of how he combined the ethnographic and life history traditions in his dissertation research on an experienced teacher’s adjustment to a new school and community.

3. Your selection of a paradigm (or paradigms) is not entirely a matter of free choice. You have already made many assumptions about the world, your topic, and how we can understand these, even if you have never consciously examined these. Choosing a paradigm or tradition primarily involves assessing which paradigms best fit with your own assumptions and methodological preferences; Becker (1986, pp. 16–17) made the same point about using theory in general. Trying to work within a paradigm (or theory) that doesn’t fit your assumptions is like trying to do a physically demanding job in clothes that don’t fit—at best you’ll be uncomfortable, at worst it will keep you from doing the job well. Such a lack of fit may not be obvious at the outset; it may emerge only as you develop your conceptual framework, research questions, and methods, since these should also be compatible with your paradigmatic stance. Writing memos is a valuable way of revealing and exploring these assumptions and incompatibilities (cf. Becker, 1986, pp. 17–18).

There are four main sources for the modules that you can use to construct the conceptual framework for your study: (1) your own experiential knowledge, (2) existing theory and research, (3) your pilot and exploratory research, and (4) thought experiments. I will begin with experiential knowledge, because it is both one of the most important conceptual resources and the one that is most seriously neglected in works on research design. I will then deal with the use of existing theory and research in research design, in the process introducing a tool, known as “concept mapping,” that can be valuable in developing a conceptual framework for your study. Finally, I will discuss the uses of your own pilot research and “thought experiments” in generating preliminary or tentative theories about your subject.

EXPERIENTIAL KNOWLEDGE

Traditionally, what you bring to the research from your own background and identity has been treated as “bias,” something whose influence needs to be eliminated from the design, rather than a valuable component of it. This has been true to some extent even in qualitative research, despite the fact that qualitative researchers have long recognized that in this field, the researcher is
the instrument of the research. In opposition to the traditional view, C. Wright Mills, in a classic essay, argued that

the most admirable scholars within the scholarly community . . . do not split their work from their lives. They seem to take both too seriously to allow such disassociation, and they want to use each for the enrichment of the other. (1959, p. 195)

Separating your research from other aspects of your life cuts you off from a major source of insights, hypotheses, and validity checks. Alan Peshkin, discussing the role of subjectivity in the research he had done, concluded that

the subjectivity that originally I had taken as an affliction, something to bear because it could not be foregone, could, to the contrary, be taken as “virtuous.” My subjectivity is the basis for the story that I am able to tell. It is a strength on which I build. It makes me who I am as a person and as a researcher, equipping me with the perspectives and insights that shape all that I do as a researcher, from the selection of topic clear through to the emphases I make in my writing. Seen as virtuous, subjectivity is something to capitalize on rather than to exorcise. (Glesne & Peshkin, 1992, p. 104)

Anselm Strauss emphasized many of the same points in discussing what he called “experiential data”—the researcher’s technical knowledge, research background, and personal experiences. He argued that

These experiential data should not be ignored because of the usual canons governing research (which regard personal experience and data as likely to bias the research), for these canons lead to the squashing of valuable experiential data. We say, rather, “mine your experience, there is potential gold there!” (1987, p. 11)

Students’ proposals sometimes seem to systematically ignore what their authors know from their own experience about the settings or issues they propose to study; this can seriously damage the proposal’s credibility. Both Peshkin and Strauss emphasized that this is not a license to uncritically impose one’s assumptions and values on the research. Reason (1988, 1994) used the term “critical subjectivity” to refer to

a quality of awareness in which we do not suppress our primary experience; nor do we allow ourselves to be swept away and overwhelmed by it; rather we raise it to consciousness and use it as part of the inquiry process. (1988, p. 12)

The explicit incorporation of your identity and experience in your research has gained wide theoretical and philosophical support (e.g., Berg & Smith, 1988; Denzin & Lincoln, 2000; Jansen & Peshkin, 1992). The philosopher Hilary Putnam (1987, 1990) argued that there cannot, even in principle, be such a thing as a “God’s eye view,” a view that is the one true “objective”
account. Any view is a view from some perspective, and therefore is shaped by the location (social and theoretical) and “lens” of the observer.

Philosophical argument does not, however, solve the problem of how to incorporate this experience most productively in your research design, or how to assess its effect on your research. Peshkin’s account of how he became aware of the different “I’s” that influenced and informed his studies was discussed in Chapter 2, and Jansen and Peshkin (1992) and Grady and Wallston (1988, pp. 40–43) provided valuable examples of researchers using their own subjectivity and experience in their research. At present, however, there are few well-developed and explicit strategies for doing this.

The technique that I call a “researcher identity memo,” which was introduced in Chapter 2 for reflecting on your own goals and their relevance for your research, can also be used to explore your assumptions and experiential knowledge. I originally got the idea for this sort of memo from a talk by Robert Bogdan, who described how, before beginning a study of a neonatal intensive care unit of a hospital, he tried to write out all of the expectations, beliefs, and assumptions that he had about hospitals in general and neonatal care in particular, as a way of identifying and taking account of the perspective that he brought to the study. This exercise can be valuable at any point in a study, not just at the outset. Example 3.1 is part of one of my own identity memos, written while I was working on a paper on diversity, solidarity, and community (Maxwell, n.d.), trying to develop a theory that incorporated contact and interaction, as well as shared characteristics, as a basis for community. Example 3.2 is a memo in which the researcher used her own experience to refocus a study of women’s use of breast self-examination. Example 2.4, in the previous chapter, deals in part with the author’s prior experiences and how these influenced her understanding of educational reform in Bolivia, as well as her goals.

EXAMPLE 3.1

Identity Memo on Diversity

I can’t recall when I first became interested in diversity; it’s been a major concern for at least the last 20 years. . . . I do remember the moment that I consciously realized that my mission in life was “to make the world safe for diversity”; I was in Regenstein Library at the University of Chicago one night in the mid-’70s talking to another student about why we had gone into anthropology, and the phrase suddenly popped into my head.

However, I never gave much thought to tracing this position any further back. I remember, as an undergraduate, attending a talk on some political
topic, and being struck by two students’ bringing up issues of the rights of particular groups to retain their cultural heritages; it was an issue that had never consciously occurred to me. And I’m sure that my misspent youth reading science fiction rather than studying had a powerful influence on my sense of the importance of tolerance and understanding of diversity; I wrote my essay for my application to college on tolerance in high school society. But I didn’t think much about where all this came from.

It was talking to the philosopher Amelie Rorty in the summer of 1991 that really triggered my awareness of these roots. She had given a talk on the concept of moral diversity in Plato, and I gave her a copy of my draft paper on diversity and solidarity. We met for lunch several weeks later to discuss these issues, and at one point she asked me how my concern with diversity connected with my background and experiences. I was surprised by the question, and found I really couldn’t answer it. She, on the other hand, had thought about this a lot, and talked about her parents emigrating from Belgium to the US, deciding they were going to be farmers like “real Americans,” and with no background in farming, buying land in rural West Virginia and learning how to survive and fit into a community composed of people very different from themselves.

This made me start thinking, and I realized that as far back as I can remember I’ve felt different from other people, and had a lot of difficulties as a result of this difference and my inability to “fit in” with peers, relatives, or other people generally. This was all compounded by my own shyness and tendency to isolate myself, and by the frequent moves that my family made while I was growing up...

The way in which this connects with my work on diversity is that my main strategy for dealing with my difference from others, as far back as I can remember, was not to try to be more like them (similarity-based), but to try to be helpful to them (contiguity-based). This is a bit oversimplified, because I also saw myself as somewhat of a “social chameleon,” adapting to whatever situation I was in, but this adaptation was much more an interactional adaptation than one of becoming fundamentally similar to other people.

It now seems incomprehensible to me that I never saw the connections between this background and my academic work...

[The remainder of the memo discusses the specific connections between my experience and the theory of diversity and community that I had been developing, which sees both similarity (shared characteristics) and contiguity (interaction) as possible sources of solidarity and community (Maxwell, n.d.).]
EXAMPLE 3.2

How One Researcher Used Her Personal Experience to Refocus Her Research Problem

I had spent countless hours in the library, reading the literature on women's practice of breast self-examination (BSE). The articles consisted of some research studies, some editorials in major medical journals, and some essays. The research base was very weak, mainly surveys asking some group of women whether they did BSE, and if not, why not. The groups often were not large or representative. The questions and format varied tremendously from study to study. That most women did not do it was clear, having been found repeatedly. Why they did not do it was not at all clear. I was developing a long list of possible reasons women did not do it. They seemed to fall into three categories: (1) Women were ignorant of how or why to do BSE; (2) women were too modest to touch themselves; and (3) women were too fearful of what they would find. The reasons all seemed quite plausible, but somehow were not satisfactory. The question kept repeating itself, “Why don’t women do BSE?” Then I asked the question of myself, “Why don’t I do BSE?” I knew none of the reasons explained my behavior. Then I changed the question: “What would get me to do it?” It occurred to me that, if a friend called each month and asked if I had done it, I would do it, either in anticipation of her call or immediately afterward. Changing the question to a positive one completely changed my way of thinking about the problem: “What would encourage women to do BSE?” The new question opened a range of possibilities by putting BSE in the context of behavior modification, which offered a variety of testable techniques for changing behavior. (Grady & Wallston, 1988, p. 41)

PRIOR THEORY AND RESEARCH

The second major source of modules for your conceptual framework is prior theory and research—not simply published work, but other people's theories and empirical research as a whole. I will begin with theory, because it is for most people the more problematic and confusing of the two, and then deal with using prior research for other purposes than as a source of theory.
I’m using the term “theory” to refer to something that is considerably broader than its usual meaning in discussions of research methods. By “theory,” I mean simply a set of concepts and the proposed relationships among these, a structure that is intended to represent or model something about the world. As LeCompte and Preissle (1993, p. 239) stated, “theorizing is simply the cognitive process of discovering or manipulating abstract categories and the relationships among these categories.” My only modification of this is to include not simply abstract categories, but concrete and specific concepts as well.

This use encompasses everything from so-called “grand theory,” such as behaviorism, psychoanalysis, or rational choice theory, to specific, everyday explanations of a particular event or state, such as “Dora (my 8-year-old daughter) doesn’t want to go to school today because she’s angry at her teacher for correcting her yesterday.” That is, I’m not using “theory” to denote a particular level of complexity, abstraction, or generality of explanatory propositions, but to refer to the entire range of such propositions. All such explanations have fundamental features in common, and for my purposes the similarities are more important than the differences.

Thus, theory is not an arcane and mysterious entity that at some point in your training you learn to understand and master. As Groucho Marx used to say on the 1950s TV game show You Bet Your Life, “It’s an ordinary household word, something you use every day.” The simplest form of theory consists of two concepts joined by a proposed relationship. Such a theory can be as general as “Positive reinforcement leads to continuation of the reinforced behavior,” or as specific as “An asteroid impact caused the extinction of the dinosaurs.” The important point is what makes this a theory: the linking of two concepts by a proposed relationship.

A major function of theory is to provide a model or map of why the world is the way it is (Strauss, 1995). It is a simplification of the world, but a simplification aimed at clarifying and explaining some aspect of how it works. Theory is a statement about what is going on with the phenomena that you want to understand. It is not simply a “framework,” although it can provide that, but a story about what you think is happening and why. A useful theory is one that tells an enlightening story about some phenomenon, one that gives you new insights and broadens your understanding of that phenomenon. (See the discussion of causal processes in Chapter 2.)

Glaser and Strauss’s term “grounded theory” (1967), which has had an important influence on qualitative research, does not refer to any particular level of theory, but to theory that is inductively developed during a study (or series of studies) and in constant interaction with the data from that study.
This theory is “grounded” in the actual data collected, in contrast to theory that is developed conceptually and then simply tested against empirical data. In qualitative research, both existing theory and grounded theory are legitimate and valuable.

The Uses of Existing Theory

Using existing theory in qualitative research has both advantages and risks, as discussed earlier. The advantages of existing theory can be illustrated by two metaphors:

Theory is a coat closet. (I got this metaphor from Jane Margolis, who once described Marxism as a coat closet: “You can hang anything in it.”) A useful high-level theory gives you a framework for making sense of what you see. Particular pieces of data, which otherwise might seem unconnected or irrelevant to one another or to your research questions, can be related by fitting them into the theory. The concepts of the existing theory are the “coat hooks” in the closet; they provide places to “hang” data, showing their relationship to other data. However, no theory will accommodate all data equally well; a theory that neatly organizes some data will leave other data disheveled and lying on the floor, with no place to put them.

Theory is a spotlight. A useful theory *illuminates* what you see. It draws your attention to particular events or phenomena, and sheds light on relationships that might otherwise go unnoticed or misunderstood. Bernd Heinrich, discussing an incident in his investigation of the feeding habits of caterpillars, stated that

> The clipped leaf stood out as if flagged in red, because it didn’t fit my expectations or theories about how I thought things ought to be. My immediate feeling was one of wonder. But the wonder was actually a composite of different theories that crowded my mind and vied with each other for validation or rejection. . . . Had I no theories at all, the partially eaten leaf on the ground would not have been noticed. (1984, pp. 133–134)

By the same token, however, a theory that brightly illuminates one area will leave other areas in darkness; no theory can illuminate everything.

A study that makes excellent use of existing theory is described in Example 3.3.
EXAMPLE 3.3

Using Existing Theory

Eliot Freidson’s book *Doctoring Together: A Study of Professional Social Control* (1975) is an account of his research in a medical group practice, trying to understand how the physicians and administrators he studied identified and dealt with violations of professional norms. In conceptualizing what was going on in this practice, he used three broad theories of the social organization and control of work. He referred to these as the entrepreneurial, or physician-merchant, model, deriving from the work of Adam Smith; the bureaucratic, or physician-official, model, deriving to a substantial extent from Max Weber; and the professional, or physician-craftsman, model, which has been less clearly conceptualized and identified than the others. He showed how all three theories provide insight into the day-to-day work of the group he studied, and he drew far-ranging implications for public policy from his results.

Freidson also used existing theory in a more focused (and unexpected) way to illuminate the results of his research. He argued that the social norms held by the physicians he studied allowed considerable differences of opinion about both the technical standards of work performance and the best way to deal with patients. These norms “limited the critical evaluation of colleagues’ work and discouraged the expression of criticism” (p. 241). However, the norms also strongly opposed any outside control of the physicians’ practice, defining physicians as the only ones capable of judging medical work. “The professional was treated as an individual free to follow his own judgment without constraint, so long as his behavior was short of blatant or gross deficiencies in performance and inconvenience to colleagues” (p. 241). Freidson continued:

This is a very special kind of community that, structurally and normatively, parallels that described by Jesse R. Pitts as the “delinquent community” of French schoolchildren in particular and French collectivities in general during the first half of the twentieth century. . . . Its norms and practice were such as to both draw all members together defensively against the outside world. . . . and, internally, to allow each his freedom to act as he willed. (pp. 243–244)

He presented striking similarities between the medical practice he studied and the French peer group structure identified by Pitts. He coined the phrase “professional delinquent community” to refer to professional groups such as the one he described, and used Pitts’s theory to illuminate the process by which this sort of community develops and persists.
However, Becker (1986) warned that the existing literature, and the assumptions embedded in it, can deform the way you frame your research, causing you to overlook important ways of conceptualizing your study or key implications of your results. The literature has the advantage of what he calls “ideological hegemony,” so that it is difficult to see any phenomenon in ways that are different from those that are prevalent in the literature. Trying to fit your insights into this established framework can deform your argument, weakening its logic and making it harder for you to see what a new way of framing the phenomenon might contribute. He explained how his own research on marijuana use was deformed by existing theory:

When I began studying marijuana use in 1951, the ideologically dominant question, the only one worth looking at, was “Why do people do a weird thing like that?” and the ideologically preferred way of answering it was to find a psychological trait or social attribute which differentiated people who did from people who didn’t . . . [M]y eagerness to show that this literature (dominated by psychologists and criminologists) was wrong led me to ignore what my research was really about. I had blundered onto, and then proceeded to ignore, a much larger and more interesting question: how do people learn to define their own internal experiences? (1986, pp. 147–148)

I had the same experience with my dissertation research on kinship in an Inuit community in northern Canada. At the time that I conducted the research, the literature on kinship in anthropology was dominated by a debate between two theories of the meaning of kinship, one holding that in all societies kinship was fundamentally a matter of biological relationship, the other arguing that biology was only one possible meaning of kinship terms, another being social relatedness. I framed my dissertation (Maxwell, 1986) in terms of these two theories, arguing that my evidence mainly supported the second of these theories, though with significant modifications. It was only years later that I realized that my research could be framed in a more fundamental and interesting way—What is the nature of relationship and solidarity in small, traditional communities? Are these based on, and conceptualized in terms of, similarity (in this case, biological similarity or shared genetic substance) or social interaction? (See Example 3.1.) My research could have been much more productive if I had grasped this theoretical way of framing the study at the outset.

Becker argued that there is no way to be sure when the dominant approach is wrong or misleading or when your alternative is superior. What you can do is to try to identify the ideological components of the established approach, and to see what happens when you abandon these assumptions. He claimed that “a serious scholar ought routinely to inspect competing ways of talking about the same subject matter,” and cautioned, “use the literature, don’t let it use you” (1986, p. 149). An awareness of alternative sources of concepts and
theories about the phenomena you are studying—including sources other than “the literature”—is an important counterweight to the ideological hegemony of existing theory and research.

There are thus two main ways in which qualitative researchers often fail to make good use of existing theory: by not using it enough, and by relying too heavily and uncritically on it. The first fails to explicitly apply any prior analytic abstractions or theoretical framework to the study, thus missing the insights that only existing theory can provide. Every research design needs some theory of the phenomena you are studying, even if it is only a common-sense one, to guide the other design decisions you make. The second type of failure has the opposite problem: It imposes theory on the study, shoehorning questions, methods, and data into preconceived categories and preventing the researcher from seeing events and relationships that don’t fit the theory.

The imposition of dominant theories is a serious ethical problem, not simply a scientific or practical one (Lincoln, 1990); it can marginalize or dismiss the theories of participants in the research, and conceal or minimize oppression or exploitation of the group studied. (In some cases, the dominant theory is itself ethically problematic, as in the case of theories of the problems that disadvantaged groups encounter that unjustifiably “blame the victim.”) To be genuinely qualitative research, a study must take account of the theories and perspectives of those studied, rather than relying entirely on established views or the researcher’s own perspective.

The tension between these two problems in applying theory (underuse and overuse) is an inescapable part of research, not something that can be “solved” by some technique or insight. A key strategy for dealing with this is embodied in the scientific method, as well as in interpretive approaches such as hermeneutics: Develop or borrow theories and continually test them, looking for discrepant data and alternative ways (including the research participants’ ways) of making sense of the data. (I discuss this further in Chapter 6, as a central issue in validity.) Bernd Heinrich described searching for crows’ nests, in which you look through the trees for a dark spot against the sky, and then try to see a glimmer of light through it (real crows’ nests are opaque): “It was like science: first you look for something, and then when you think you have it you do your best to prove yourself wrong” (1984, p. 28).

CONCEPT MAPS

For many students, the development and use of theory is the most daunting part of a qualitative study. At this point, therefore, I want to introduce a tool
for developing and clarifying theory, known as “concept mapping.” This was originally developed by Joseph Novak (Novak & Gowin, 1984), first as a way to understand how students learned science, and then as a tool for teaching science. A similar strategy is one that Miles and Huberman (1994, pp. 18–22) called a “conceptual framework.” Anselm Strauss (1987, p. 170) provided a third variation, which he called an “integrative diagram.” These approaches have so much in common that I will present them as a single strategy, ignoring for the moment some important differences in the way they are used.

Figures 3.1 to 3.5 provide a variety of examples of concept maps; further examples can be found in Miles and Huberman (1994) and Strauss (1987, pp. 170–183).

As these figures illustrate, a concept map of a theory is a visual display of that theory—a picture of what the theory says is going on with the phenomenon you’re studying. These maps do not depict the study itself, nor are they a specific part of either a research design or a proposal. [However, concept maps can be used to visually present the design or operation of a study—my model of research design (Figure 1.1) is just such a map.] Rather, concept mapping is a tool for developing the conceptual framework for your design. And like a theory, a concept map consists of two things: concepts and the relationships among these. These are usually represented, respectively, as labeled circles or boxes and as arrows or lines connecting these.

There are several reasons for creating concept maps:

1. To pull together, and make visible, what your implicit theory is, or to clarify an existing theory. This can allow you to see the implications of the theory, its limitations, and its relevance for your study.

2. To develop theory. Like memos, concept maps are a way of “thinking on paper”; they can help you see unexpected connections, or identify holes or contradictions in your theory and help you to figure out ways to resolve these.

Concept maps usually require considerable reworking in order to get them to the point where they are most helpful to you; don’t expect to generate your final map on the first try. One useful way of developing a concept map is on a blackboard, where you can erase unsuccessful attempts or pieces that don’t seem to work well, and play with possible arrangements and connections. (The disadvantage of this is that it doesn’t automatically create a “paper trail” of your attempts; such a trail can help you to understand how your theory has changed and avoid repeating the same mistakes.) There are also a
Figure 3.1 A Study of Newfoundland Principals’ Craft Knowledge

variety of computer programs that can be used to create concept maps (Weitzman & Miles, 1995); I used one of the most popular ones, Inspiration, to create many of the diagrams for this book. Strauss (1987, pp. 171–182) provided a valuable transcript of his consultation with one student, Leigh Star, in helping her to develop a concept map for her research. Exercise 3.1 provides some ways of getting started on creating concept maps of your conceptual framework.
CONCEPTUAL FRAMEWORK: WHAT DO YOU THINK IS GOING ON?

The following factors appear to influence the decisions to keep at home an adult family member who is dependent because of disabilities, rather than "placing" or "institutionalizing" the adult child:

FAMILY TYPOLOGY is a model of intrafamily interactions and permeability of family boundaries developed by David Kantor and expanded by Larry Constantine. Although I have not collected data on family typologies, intuition and existing data favor the prediction that families in the upper-right quadrant (closed family systems) and lower-right quadrant (synchronous family systems) are more likely to keep the dependent adult child at home, whereas families in the upper-left quadrant (open families) and lower-left quadrant (random families) are more likely to place the adult child.

In the **DEPENDENCE grid**, preliminary data indicate that the upper-left quadrant (high parental dependence, low child dependence) tends to correlate with a decision to keep the adult child at home, whereas the lower-right quadrant (parental independence, high care needs in a child) tends to correlate with placing the adult child.

Similarly, in the **BEHAVIOR/COPING grid**, the upper-left quadrant (minimal behavior problems, high parental coping) tends to correlate with keeping the adult child at home, whereas the lower-right quadrant (serious behavior problems, low parental coping) tends to correlate with a decision to place the adult child.

Figure 3.2 Factors Affecting the Decision to Keep a Dependent Adult Child at Home

This map displays some of the events and influences leading to the widespread use of “brother” terms in Blackfeet society by the late 1800s. More than any other Plains tribe, the Blackfeet were involved in the fur trade. This led to increased wealth (including guns), a greater value of women’s work in preparing bison hides for trade, a highly unequal distribution of wealth that favored men who had many horses for bison hunting, and a massive increase in polygyny, as wealthy men acquired large numbers of wives to process hides. The acquisition of guns and horses allowed the Blackfeet to move westward into the Plains, driving out the tribes that had previously lived there. The increase in warfare and bison hunting created a greater need for male solidarity and led to the widespread use of brother terms between men of the same generation to enhance this solidarity. However, the increased polygyny led to a wider range of ages within a man’s generation and to the extension of brother terms to men of other generations who were of about the speaker’s age. This proliferation of the use of brother terms eventually diluted their solidarity value, generating a new term, “comrade,” which was often used in close relationships between men.

Figure 3.3 Causes of Changes in Blackfeet Kin Terminology

4. Declining enrollments, tight funding

1. Funding for program ends

2. New principals unfamiliar with program, skeptical

3. Principals opposed to using own budgets for program

5. Job insecurity, uncertainly

4. Staffing cutbacks projected

7. Singrister, Colby take other local project jobs

6. Jesseman (central office) advocates weakly for program

7. Jesseman begins work provisionally on another local project

8. Forward institutionalization is uncertain

Events and States Not Shown in Figure

Boxes are events: bubbles are states.

Figure 3.4 Excerpt From an Event-State Network: Perry-Parkdale School

4. Environmental turbulence

1. External funds (temporary)

2. Building endorsement

3. Program vulnerability

6. Influence of innovation advocates

5. Job insecurity

8. Institutionalization

7. Job mobility

Figure 3.5 Excerpt From a Causal Network: Perry-Parkdale School

EXERCISE 3.1

Creating a Concept Map for Your Study

How do you develop a concept map? First, you need to have a set of concepts to work with. These can come from existing theory, from your own experience, or from the people you are studying—their own concepts of what’s going on (discussed below in the section titled “Pilot Research”). The main thing to keep in mind is that at this point you are trying to represent the theory you already have about the phenomena you are studying, not primarily to invent a new theory.

If you don’t already have a clear conceptual framework for this, there are several strategies you can use to develop your map. Strauss (1987, pp. 182–183) and Miles and Huberman (1994, p. 22) provided additional advice on how to develop concept maps for your study.

1. You can think about the key words you use in talking about this topic; these probably represent important concepts in your theory. You can pull some of these concepts directly from things you’ve already written about your research.

2. You can take something you’ve already written and try to map the theory that is implicit (or explicit) in this. (This is often the best approach for people who don’t think visually and prefer to work with prose.)

3. You can take one key concept, idea, or term and brainstorm all of the things that might be related to this, then go back and select those that seem most directly relevant to your study.

4. You can ask someone to interview you about your topic, probing for what you think is going on and why; then listen to the tape and write down the main terms you use in talking about it. Don’t ignore concepts based on your own experience rather than “the literature”; these can be central to your conceptual framework.

Once you’ve generated some concepts to work with, ask yourself how these are related. What connections do you see among them? Leigh Star (quoted in Strauss, 1987, p. 179) suggested beginning with one category or concept and drawing “tendrils” to others. What do you think are the important connections between the concepts you’re using? The key pieces of a concept map aren’t the circles, but the arrows; these represent proposed relationships between the concepts or events. Ask yourself the following questions: What do I mean by this particular arrow? What does
Avoid getting stuck in what Miles and Huberman (1994, p. 22) called a "no-risk" map, in which all the concepts are global and abstract and there are two-directional arrows everywhere. This sort of diagram can be useful as a brainstorming exercise at the beginning, providing you with a conceptual checklist of things that may be important in your research, but at some point, you need to focus the theory. It can be useful at some point to narrow your map to two concepts and the relationship between them, as an exercise in focusing on what's most central to your theory. Make commitments to what you think is most important and relevant in your theory.

Finally, write a narrative of what this concept map says about the phenomena you are studying. Try to capture in words the ideas that are embodied in the diagram. Figures 3.2 and 3.3 present concept maps with accompanying narratives; Miles and Huberman (1994, pp. 135–136, 159–161) and Strauss (1987, pp. 203–209) provided additional examples. This is an important part of the exercise, and can suggest ways to develop your theory. For example, it can point out when something in your map is simply a placeholder for the actual concept or relationship that you need; Becker (1986) described such placeholders as “meaning nothing in themselves, [but] they mark a place that needs a real idea” (p. 83; he also gave a good example of this on pp. 52–53).

Avoid getting stuck in what Miles and Huberman (1994, p. 22) called a “no-risk” map, in which all the concepts are global and abstract and there are two-directional arrows everywhere. This sort of diagram can be useful as a brainstorming exercise at the beginning, providing you with a conceptual checklist of things that may be important in your research, but at some point, you need to focus the theory. It can be useful at some point to narrow your map to two concepts and the relationship between them, as an exercise in focusing on what’s most central to your theory. Make commitments to what you think is most important and relevant in your theory.

An initial framework often works best with large categories that hold a lot of things that you haven’t yet sorted out. However, you should try to differentiate these categories, making explicit your ideas about the relationships among the items in them. One way to start this is by analyzing each one into subcategories, identifying the different kinds of things that go into each. (Figure 3.1 does this for the peripheral categories that connect to the core category.) Another way is to dimensionalize the categories (Strauss & Corbin, 1990), trying to separate out their different properties. (Figure 3.2 does this for several of the categories.)

How do you know whether something is a category or a relationship? This is not an easy question to answer; I do this rather intuitively. In fact, many things can be seen as either; there is no one right concept map for the phenomena
you’re studying, and different maps incorporate different understandings of what’s going on. You should try out alternative maps for the theory you are developing, rather than sticking rigidly with one formulation. There are also different kinds of concept maps, with different purposes; these include:

a. an abstract framework mapping the relationship among concepts
b. a “flowchart”-like account of events and how you think these are connected
c. a causal network of variables or influences
d. a treelike diagram of the meanings of words (e.g., Miles & Huberman, 1994, p. 133)
e. a Venn diagram, representing concepts as overlapping circles (e.g., Miles & Huberman, 1994, p. 249)

You can use more than one of these in a given study; the bottom line is their usefulness to you in advancing your understanding of what’s going on. Most of Miles and Huberman’s examples are best suited to studies of social processes; they aren’t necessarily the most useful models for a study of meanings and their relationship to one another. Remember that a concept map is not an end in itself; it is a tool for developing theory and making that theory more explicit. Also, keep in mind that a concept map is not something that you do once and are finished with; you should go back and rework your concept maps as your understanding of the phenomena you are studying develops. Be careful of making your map too elegant; this may be the visual equivalent of what Becker called “classy writing” (1986, p. 28), and suggests that you may be emphasizing presentation at the expense of insight.

Different authors use concept maps in different ways. Novak and Gowin took a very diffuse approach—their concepts and relationships could be almost anything, and they labeled their connections in order to keep these clear. Miles and Huberman, on the other hand, were much more focused—their connections generally referred to causal relationships or influences. My advice is to aim for something in between. You can start with a fairly diffuse map, but you should work to focus it and to make it a map of a real theory of what’s going on.

A key distinction, but one that you may not want to think about until after you’ve developed an initial concept map, is the difference between variance maps and process maps. (See Chapter 2 on the distinction between variance theory and process theory.) One way to tell the difference is that a variance map usually deals with abstract, general concepts that can take different values, and is essentially timeless; it depicts a general causal or correlational relationship between some factors or properties of things, which are conceptualized as variables. A process map, on the other hand, tells a story; there is a beginning and an
end, and the concepts are often specific events or situations, rather than variables. Many students create a variance map in their first attempt at concept mapping, because this is their idea of what theory “ought to” look like, even if their research questions are “how” questions that cry out for a process theory. Figures 3.2 and 3.5 are variance maps, while Figures 3.3 and 3.4 are process maps.

OTHER USES OF EXISTING RESEARCH

A review of prior research can serve many other purposes besides providing you with existing theory (cf. Strauss, 1987, pp. 48–56). Locke, Silverman, and Spirduso (1998) gave a clear and detailed explanation of how to read research publications for a variety of useful tools and resources, which they describe as “finding valuables in research reports” (p. 9). These “valuables” include new terminology, including key words to use in searches; references to other publications and researchers; ways of framing research questions, describing the research, or presenting theory, results, or conclusions; and identification of validity issues and ways of dealing with these. Students often overlook such information in their literature reviews, not seeing its value for their research. You need to learn to read for all of these types of information, and to use these in designing your research.

I would emphasize four specific things, in addition to theory, that prior research can contribute to your research design. First, it can help you to develop a justification for your study—to show how your work will address an important need or unanswered question. Martha Regan-Smith used prior research on medical school teaching in this way in her proposal (see the Appendix), showing why the topic she planned to study was important, and demonstrating that previous studies had not answered the specific questions she posed. Such a justification connects your plans to your goals for doing the study (Chapter 2), and I discuss this in more detail in Chapter 7, as part of creating an argument for your research proposal.

Second, prior research can inform your decisions about methods, suggesting alternative approaches or revealing potential problems and their solutions. Don’t skip over the methods sections of papers; see if what the authors did makes sense, if there were problems with their study that bring their results into question, and if you can use any of their strategies or methods for your own study. If you need more information on what they did, contact the authors; they will usually be glad to help you.

Third, prior research can be a source of data that can be used to test or modify your theories. You can see if existing theory, pilot research, or your experiential understanding are supported or challenged by previous results.
Doing this will often require thinking through the *implications* of your theory or understanding to see if these are consistent with others’ findings. This is one example of a “thought experiment,” which I discuss later in this chapter.

Finally, prior research can help you *generate* theory. Bernd Heinrich, while conducting his thesis research on thermoregulation in sphinx moths (1984, pp. 55–68), discovered that his experimental finding that these moths maintain a constant body temperature while flying was directly contradicted by others’ research. He described his response as follows:

As a first step in my decision to proceed, I spent a few months in the library reading about insect physiology in general and everything about sphinx moths in particular. Something in the known physiology and morphology might provide a clue. It would be necessary to collect more and more details on the problem until I could visualize it as closely as if it were a rock sitting in the palm of my hand. I wanted to find out *how* the moths were thermoregulating... . . .

I came across an obscure French paper of 1919 by Franz Brocher on the anatomy of the blood circulatory system in sphinx moths. The odd thing about these moths is that the aorta makes a loop through their thoracic muscles. In many or most other insects, it passes *underneath* these muscles. . . . (Heinrich, 1984, pp. 63–64)

This paper gave Heinrich the critical clue to how these moths were regulating their body temperature: They were shunting blood through the thoracic muscles (which move the moths’ wings) to cool these muscles, which would otherwise overheat, and then losing the excess heat from the abdomen, in the same way that a car’s water pump and radiator cool the engine. This theory was confirmed by subsequent experiments.

It is possible, of course, to become *too* immersed in the literature; as C. Wright Mills warned, “you may drown in it... . Perhaps the point is to know when you ought to read, and when you ought not to” (1959, p. 214). One of Mills’s main ways of dealing with this problem was, in reading, to always be thinking of empirical studies that could test the ideas he gained from the literature, both as preparation for actual research and as an exercise of the imagination (1959, p. 205). These two strategies connect to the final two sources for your conceptual framework: pilot studies and thought experiments.

PILOT AND EXPLORATORY STUDIES

Pilot studies serve some of the same functions as prior research, but they can be focused more precisely on your own concerns and theories. You can design pilot studies specifically to test your ideas or methods and explore their
implications, or to inductively develop *grounded* theory. What Light, Singer, and Willett (1990) said about an illustrative quantitative study is equally true for qualitative research: “Many features of their design could not be determined without prior exploratory research” (p. 212). And they argued that

No design is ever so complete that it cannot be improved by a prior, small-scale exploratory study. Pilot studies are almost always worth the time and effort. Carry out a pilot study if *any* facet of your design needs clarification. (1990, p. 213)

Example 3.4 describes how Carol Kaffenberger, whose decision to study adolescent cancer survivors and their siblings was presented in Example 2.1, used a pilot study to help design her dissertation research.

EXAMPLE 3.4

How a Student Used a Pilot Study to Help Design Her Dissertation Research

Following her decision to change her dissertation topic, and a review of the literature on her new topic, Carol Kaffenberger decided to conduct a pilot study to help her plan her dissertation research. She chose to use her own family for this pilot study, for several reasons. First, she wanted to practice her interviews, and believed that her family would provide good feedback and suggestions about her methods and what it was like to be a participant in such a study. Second, she wanted to get a better understanding of the meaning of the cancer experience for her own family (one of the personal goals of her research), and to test her own assumptions about this experience. Third, for personal reasons, she wanted her children to have firsthand knowledge of the work she was about to begin. Finally, her family was a convenient choice, and wouldn’t require her to find and gain approval from other families.

Carol learned several valuable things from this pilot study. First, she found that she needed to revise her interview guide, adding questions about issues that she hadn’t realized were important, such as family relationships before the diagnosis, the support siblings received during diagnosis and treatment, and how they thought the experience would affect their future. She also discovered additional useful questions, such as asking participants to describe specific events that illustrated what they had been saying. Second, she gained a deeper understanding of her children’s experiences, modifying her conceptual framework. Both previous
research and her prior beliefs had led her to underestimate the long-term consequences of the cancer experience for her family. She learned that she needed to step back and listen to participants’ experiences in new ways. Finally, she found that her own children’s responses were sometimes guarded and predictable, due to the consequences of what they said for family relationships, and tended to minimize negative feelings or blame. Although the pilot study was valuable, it could not fully answer the questions she had (Kaffenberger, 1999).

One important use that pilot studies have in qualitative research is to develop an understanding of the concepts and theories held by the people you are studying—what is often called “interpretation.” This is not simply a source of additional concepts for your own theory, ones that are drawn from the language of participants; this is a type of concept that Strauss (1987, pp. 33–34) called “in-vivo codes.” More important, it provides you with an understanding of the meaning that these phenomena and events have for the people who are involved in them, and the perspectives that inform their actions. These meanings and perspectives are not theoretical abstractions; they are real, as real as people’s behavior, though not as directly visible. People’s ideas, meanings, and values are essential parts of the situations and activities you study, and if you don’t understand these, your theories about what’s going on will often be incomplete or mistaken (Maxwell, 2004a; Menzel, 1978). In a qualitative study, these meanings and perspectives should constitute a key component of your theory; as discussed in Chapter 2, they are one of the things your theory is about, not simply a source of theoretical insights and building blocks for the latter. In Example 3.2, the norms and values held by the physicians studied by Freidson were a major part of what was going on in the medical practice, and are fundamental to his theory. Such meanings and perspectives are also key components of all of the previous examples of concept maps (Figures 3.1 to 3.5). Even in Figure 3.5, in which the concepts are mostly stated in terms of behavior or contextual influences, “job insecurity” refers to perceived insecurity; if participants were unaware that their jobs might be eliminated, their behavior wouldn’t be affected.

THOUGHT EXPERIMENTS

Thought experiments have a long and respected tradition in the physical sciences (much of Einstein’s work was based on thought experiments) and are
regularly used in social sciences such as economics, but have received little attention as an explicit technique in discussions of research design, particularly qualitative research design. The best guide to thought experiments in the social sciences that I know of is that of Lave and March (1975), who used the phrase “speculative model building” for this concept. Don’t be intimidated by the word “model”; models are no more esoteric than theory, and Lave and March defined “model” as “a simplified picture of a part of the real world” (p. 3). They described their book as “a practical guide to speculation,” and provided a detailed introduction to the development and use of speculative models of some process that could have produced an observed result. Although the orientation of their later chapters is mainly quantitative, the first three chapters are very readable and extremely useful for qualitative researchers. Lave and March stated,

We will treat models of human behavior as a form of art, and their development as a kind of studio exercise. Like all art, model building requires a combination of discipline and playfulness. It is an art that is learnable. It has explicit techniques, and practice leads to improvement. (1975, p. 4)

Thought experiments challenge you to come up with plausible explanations for your and others’ observations, and to think about how to support or disprove these. They draw on both theory and experience to answer “what if” questions, and to explore the logical implications of your models, assumptions, and expectations of the things you plan to study. They can both generate new theoretical models and insights, and test your current theory for problems; in fact, all theory building involves thought experiments to some extent. They encourage creativity and a sense of discovery, and can help you to make explicit the experiential knowledge that you already possess. Example 3.5 is an illustration of this kind of speculative thinking, and Exercise 3.2 (based on one of Lave and March’s examples) provides a simple problem on which to practice your speculative skills. According to Lave and March, “the best way to learn about model building is to do it” (1975, p. 10).

EXAMPLE 3.5

Using a Thought Experiment to Develop a Theory of the Persistence of Illiteracy

One of my students, doing research on illiteracy in the Middle East, used the concept of “cycle of illiteracy” in a memo explaining the persistence of
illiteracy in parts of this area. This concept has a certain immediate plausibility—illiterate parents are much more likely to have illiterate children than are literate parents. However, my first reaction to the memo was to perform a thought experiment—to try to think of a process by which illiteracy in one generation would create illiteracy in the next generation. Lack of reading materials in the home would have some impact, as might parental values regarding literacy. However, none of these seemed powerful enough to reproduce illiteracy at a time when most children have access to schooling. On the other hand, I could easily imagine (and support with data that this student had presented) a cycle of poverty, in which poor, illiterate families would be under great pressure to keep their children out of school to work in the home or in farming, depriving them of their main opportunity to learn to read and write. As a result, these children’s lack of schooling would make it difficult for them to get jobs that would enable them to escape from poverty, thus recreating the conditions that led to their own illiteracy. This theory suggests that reducing poverty would have a major impact on illiteracy. It also implies that research on the causes of illiteracy needs to address the role of economic factors.

EXERCISE 3.2

Creating a Model of the Development of Friendship Patterns

Suppose we were interested in patterns of friendship among college students. Why are some people friends and not others? We might begin by asking all of the residents of single rooms along a particular dormitory corridor to give us a list of their friends. These lists of friends are our initial data, the results we wish to understand.

If we stare at the lists for a while, we eventually notice a pattern in them. Friends tend to live close to one another; they tend to have adjacent dormitory rooms. What process could have produced this pattern of friendship?

STOP AND THINK. Take a minute to think of a possible process that might produce this observed result.

One possible process that might have led to this result is that students can choose their dormitory rooms, and that groups of friends tend to choose adjacent rooms. This process is a speculation about the world. If the real world were like our model world, the observed facts should
match the model’s prediction. Thus, we have found a model, a process, that accounts for our results.

We do not stop here, however. We next ask what other implications this model has. For one, it implies that students in each dormitory friendship group must have known one another previously; thus, they must have attended the university the previous year; thus, there will be fewer friendship clusters among freshmen.

A survey of both a freshman dorm and a junior-senior dorm shows that there are as many friendship clusters among freshmen as among juniors and seniors. This would not be predicted by our model, unless the students knew one another in high school. However, examining the backgrounds of the freshmen shows that almost all of them come from different high schools.

So our model does not do a very good job of explaining what we observed. Some process other than mutual selection by prior friends must be involved. So we try to imagine another process that could have led to these results. Our new speculation is that most college students come from similar backgrounds, and thus have enough in common that they could become friends. Pairs of students who live near each other will have more opportunities for interaction, and are more likely to discover these common interests and values, thus becoming friends. This new speculation explains the presence of friendship clusters in freshman dorms as well as in junior-senior dorms.

STOP AND THINK. What other implications does this model have that would allow you to test it? How would you test it?

One implication is that since the chance of contact increases over time, the friendship clusters should become larger as the school year progresses. You could test this by surveying students at several different times during the year. If you did so and discovered that the prediction was correct, the model would seem more impressive. (Can you think of other testable implications?)

—Adapted from Lave and March (1975, pp. 10–12).

One issue that Lave and March’s example does not deal with is the possibility of alternative models that also predict most of the same things as the model you have developed. This is one of the most challenging aspects of model building, and the source of a common flaw in theoretical modeling—accepting a model that successfully predicts a substantial
number of things, without seriously attempting to come up with alternative models that would make the same (or better) predictions. For example, Lave and March make an assumption, a widespread one in modern Western societies, that friendship is necessarily based on common characteristics—shared interests and values. An alternative model would be one that abandons this assumption, and postulates that friendship can be created by interaction itself, and not necessarily by common characteristics (see Example 3.1).

STOP AND THINK. What tests could distinguish between these two models?

One possible test would be to investigate the beliefs, interests, and values of freshman dormitory students at both the beginning and the end of the year, to see if pairs of friends consistently had more in common at the beginning of the year than did pairs of students in the same dorm who did not become friends. (Determining this similarity at the beginning of the year addresses a possible alternative explanation for greater similarity of beliefs and interests within friendship pairs—that this similarity is a result of their friendship, rather than a cause.) If you find that pairs of friends did not consistently have more in common than pairs of non-friends, then Lave and March’s model seems less plausible (at least without modification), because it predicts that friends will have more in common than non-friends. My alternative model does predict the observed result, and therefore would deserve further consideration and testing. Eventually, you might develop a more complex model that incorporates both processes.

All of the tests described previously (and the standard approach to model testing in general) are based on variance theory—measuring selected variables to see if they fit the model’s predictions. However, there is a much more direct way to test the model—investigate the actual process, rather than just its predicted consequences (Menzel, 1978, pp. 163–168). For example, you might do participant observation of student interactions at the beginning of the year, looking at how friendships originate, or interview students about how they became friends with other students. This realist, process-oriented approach to model testing is much better suited to qualitative research than is predicting outcomes (Maxwell, 2004a, 2004c).
Experience, prior theory and research, pilot studies, and thought experiments are the four major sources of the conceptual framework for your study. Putting together a conceptual framework from these sources is a unique process for each study, and specific guidelines for how to do this are not of much use; you should look at examples of others’ conceptual frameworks to see how they have done this. The main thing to keep in mind is the need for integration of these components with one another, and with your goals and research questions. The connections between your conceptual framework and your research questions will be taken up in the next chapter.

NOTES

1. For a more detailed explanation of this point, see Locke, Spirduso, and Silverman (2000, pp. 68–69). One qualification to this principle is needed for the “literature review” in a dissertation or dissertation proposal. Some advisors or committee members see this as a demonstration that you know the literature in the field of your study, relevant or not. If you are in this situation, your literature review will need to be more comprehensive than I describe. However, you still need to identify the work that is most relevant to your study and the specific ideas that you can use in your conceptual framework (and other aspects of your design), because doing this is essential to creating a coherent presentation of, and argument for, your research plans.

2. For a detailed account of the ways in which researchers can use theory in formulating their goals, research questions, and methods, see LeCompte and Preissle (1993, pp. 115–157).

3. Miles and Huberman tended to refer to variance maps as “causal networks,” and to process maps as “event-state networks” (1994, pp. 101–171). This incorrectly equates causal analysis with variance analysis; process analysis can also be causal, as discussed in Chapter 2 (cf. Maxwell, 2004a).